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Obesity is the result of interactions between genes and environmental factors. Since monogenic 
etiology is only known in some obesity-related genes, a genetic risk score (GRS) could be useful 
to determine the genetic predisposition to obesity. Therefore, the aim of our study was to build a 
GRS able to predict genetic predisposition to overweight and obesity in European adolescents. A 
total of 1069 adolescents (51.3% female), aged 11–19 years participating in the Healthy Lifestyle in 
Europe by Nutrition in Adolescence (HELENA) cross-sectional study were genotyped. The sample 
was divided in non-overweight (non-OW) and overweight/obesity (OW/OB). From 611 single 
nucleotide polymorphisms (SNP) available, a first screening of 104 SNPs univariately associated with 
obesity (p < 0.20) was established selecting 21 significant SNPs (p < 0.05) in the multivariate model. 
Unweighted GRS (uGRS) was calculated by summing the number of risk alleles and weighted GRS 
(wGRS) by multiplying the risk alleles to each estimated coefficient. The area under curve (AUC) was 
calculated in uGRS (0.723) and wGRS (0.734) using tenfold internal cross-validation. Both uGRS and 
wGRS were significantly associated with body mass index (BMI) (p < .001). Both GRSs could potentially 
be considered as useful genetic tools to evaluate individual’s predisposition to overweight/obesity in 
European adolescents.
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Childhood obesity is a major public health problem1. Pediatric obesity increases the risk of physical and psy-
chological health problems already in childhood, and later in adulthood2. More so, adiposity related disorders 
predominantly diagnosed in adults such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases might 
originate in early life, and potentially reduce life expectancy. Over the last two decades, large-scale studies have 
been unveiling new common variants in locus of certain genes related with childhood and adult obesity3–5. At 
least 97 loci have been associated with obesity6. Currently, the FTO gene still remains the locus explaining the 
largest association with obesity in adults, children and adolescents7,8. In this regard, previous studies have shown 
that each copy of the FTO rs9939609 polymorphism A allele is associated with 2.8% higher body fat in European 
adolescents9,10. Some studies have found some associations between single nucleotide polymorphisms (SNPs) 
with obesity risk factors, being potentially useful as early life risk indicators in children and adults11. However, 
individual SNPs can explain little of disease variance12. Several studies have demonstrated the potential value of 
other genetic approaches that combine a number of SNPs to develop a genetic risk score (GRS) by summing the 
number of risk alleles: unweighted GRS (uGRS) or by multiplying the number of risk alleles to each estimated 
coefficient: weighted GRS (wGRS)13–15. The creation and validation of obesity-specific GRS sets a landmark in 
personalised genetic risk prediction for obesity and obesity-related diseases16. Different obesity-related GRS have 
been constructed in adults15–18 and children19,20 with significant obesity-gene associations, being implemented 
on a variety of ethnic population backgrounds. Within European populations, Seyednasrollah et al.21 computed 
two weighted GRS (wGRS) of 97 and 19 SNPs previously related to the risk of obesity in two cohorts including 
2262 Finnish children and adolescents (3–18 years). Further, Viljakainen et al.22 developed a wGRS to predict 
the risk of overweight and obesity in a cohort of 1142 Finnish preadolescents (11.3 ± 0.2 years) considering body 
mass index (BMI) and 30 BMI-related SNPs from previous genome-wide association studies (GWAS). As only 
few studies testing obesity risk in European adolescents with GRSs have been conducted, the aim of the present 
study was to develop a GRS for overweight and obesity in adolescents participating in the Healthy Lifestyle in 
Europe by Nutrition in Adolescence (HELENA) cross-sectional study.

Methods
Study design and population.  The data were extracted from the HELENA multicentric and cross-sec-
tional study containing a total sample of 4356 adolescents (51.6% females), aged 11–19 years old, from 10 Euro-
pean cities located in separated geographical points in Europe in 2006–2007. Their size of the cities was large 
enough to ensure participants diversity23. The main objective of the HELENA study was to obtain comparable 
data of a large sample of European adolescents on nutrition and health-related parameters by a standardised 
procedure24. More so, the study was performed following the ethical guidelines of the Declaration of Helsinki 
1964 (revision of 2013), the Good Clinical Practice, and the legislation about clinical research in humans in each 
of the participating countries and was approved by the Ethics Committee of each city participating in the study25. 
The protocol was approved by the Ethical Committee (Comité de Ética de la Investigación de la Comunidad 
Autónoma de Aragón: CEICA). Written informed consent and assent to participate in the study were obtained 
from adolescents and their parents before being enrolled. One third of the subjects (N = 1172) from the total 
sample were randomly selected for blood sampling24. After including specific inclusion criteria from genomic 
parameters (SNPs) and anthropometry (BMI), a total of 1069 adolescents (51.3% females) were finally consid-
ered for the analysis in the present study. The flow chart of the selected sample is displayed in Supplementary 
Fig. 1.

Physical examination.  All measurements were performed by trained researchers following standard pro-
tocols. Weight and height were measured following standard procedures26. BMI was calculated from height and 
weight (kg/m2)27 and categorised into non-overweight (non-OW) and overweight, including obesity (OW/OB), 
according to the age- and sex-specific BMI international cut-offs proposed by the World Obesity Federation28. 
FMI was calculated was calculated dividing fat mass (FM) by height squared (in meters).

Blood collection and genotyping.  The blood samples were collected in overnight fasting state. A stand-
ardised methodology for blood collection, transport and analysis was performed by a certified laboratory29. 
Blood for DNA extraction was collected in EDTA K3 tubes and stored at the Institute of Nutritional and Food 
Sciences (IEL) of the University of Bonn, and sent to the Laboratoire d’Analyse Genomique Centre de Ressources 
Biologiques (LAG-CRB) e BB- 0033-00071 Institut Pasteur de Lille, F-59000 Lille, France. DNA was extracted 
from white blood cells with the Puregene kit (QIAGEN, Courtaboeuf, France) and stored at − 20 °C. The geno-
typing was done by an Illumina system (Illumina, Inc, San Diego, California) using the Golden- Gate technology 
(Sampling procedure scheme, GoldenGate; Software, Inc, San Francisco, California). In terms of gene selec-
tion within the HELENA study, a candidate gene approach was used. First, a certain number of behaviour and 
metabolic pathways related to the adolescence´s health were identified. These included included food intake, 
eating behaviour, food choices and preferences, energy and adipose tissue metabolism, glucose, insulin, lipid and 
lipoprotein metabolism among others. Finally, SNPs playing a key role in genes coding for the abovementioned 
pathways were selected. The HapMap database was used to select tag and independent SNPs. SNPs were selected 
with a minor allele frequency (MAF) above 0.1 and tag SNPs with r2 above 0.8. If tag SNPs described for a single 
gene exceeded in number (more than ~ 20), only SNPs significantly associated with appropriate phenotypes in 
previous studies were selected, if available. Lastly, SNPs from the NCBI database were used when a limited num-
ber of SNPs were available in the HapMap database.

Statistical analysis.  Descriptive characteristics by sex are shown as median and interquartile range (IQR) 
for continuous variables and as absolute and relative frequency for categorical ones. The statistical tests used to 
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compare differences by sex were Pearson´s chi-square for categorical variables and Mann–Whitney-Wilcoxon 
test for continuous variables. Pearson’s chi-square statistic test was used to analyse the Hardy–Weinberg equilib-
rium. Shapiro–Wilk non-parametric test to check normality of variables was performed.

All statistical analyses were performed using RStudio Version 1.2.5001 (RStudio Team (2015). RStudio: Inte-
grated Development for R. RStudio, Inc., Boston, MA URL http://www.rstud​io.com/) and the significance level 
was set at p < 0.05.

Development of the genetic risk score.  Candidate gene approach was the procedure based to select the 
genes in the HELENA study. First, relevant adolescent´s behaviours and metabolic pathways related to health 
were identified. Second, key proteins that, according to the literature, play a role in these pathways were also 
identified. Third, a selection of SNPs coding for these proteins was performed. Fourth, in order to select and 
tag SNPs independently, the HapMap database (2007 release) was used. SNPs with a minor allele frequency 
(MAF) above 0.1 and tag SNPs with r2 above 0.8 were selected. If too many tag SNPs described for a single gene 
(more than ~ 20) were identified, only SNPs significantly associated with appropriate phenotypes in previous 
publications were selected, if available. Finally, SNPs from the NCBI database were included when a too limited 
number of SNPs were available in the HapMap database. Based on the above, a total of 611 SNPs related to obe-
sity and obesity-related phenotypes available in the HELENA dataset30 were used to build a GRS considering 
BMI as obesity-related variable in order to predict a major predisposition of overweight/obesity in European 
adolescents24. Each SNP was recoded as 0, 1, or 2 depending on the number of risk alleles defined in previous 
literature, respectively. A further selection of SNPs was performed using generalised linear model (GLM) to 
establish an initial cut off point (p < 0.20) to refine the search to 104 SNPs. Then, a step by step algorithm was 
applied to select the significant SNPs under the p < 0.05 threshold in a multivariate model to shortlist a final 
number of 21 SNPs significantly associated with BMI. The correspondence between actual and predicted prob-
abilities of this model was analysed by a calibration curve. The unweighted GRS (uGRS) was calculated by sum-
ming the number of risk alleles from the 21 SNP variants with a rescaling, considering the SNPs that appear as 
protector factors. The wGRS was the result of multiplying the number of risk alleles at each locus (0, 1, 2) for 
each estimated coefficient of the multivariate model. Participants with missing data were dismissed in the GRS 
analysis (N = 3287). Receiver operating characteristics (ROC) curve analysis31 was applied to test the diagnostic 
accuracy of the GRS to classify potential participants for obesity associated disturbances32. The area under curve 
(AUC) was calculated in uGRS and wGRS considering weight status as binary variable (i.e., non-OW vs. OW/
OB). Selection of uGRS over wGRS to proceed with the design of the final model was performed by the higher 
value of the AUC compared using the Delong test. The model was internally validated performing tenfold cross 
validation analysis. For this analysis, the whole dataset was divided in 10 groups, using 9 of them to build the 
predictive model and the one to remains to validate this model. This procedure was repeated taking into account 
all possible ways to select the 9 subgroups, ensuring different forms to validate GRS with data not used in the 
building model process. Moreover, we evaluated the distribution of uGRS and wGRS values for NON-OW and 
OW/OB in a boxplot to graphically analyse the performance of the GRS. In order to provide the best cut-off for 
the use of the GRS as a dichotomic variable, the maximisation of the Youden index33 was explored (see Table 3). 
Lastly, to test the GRS reliability with a general adiposity estimate other than BMI, simple linear regression mod-
els (LRM) were performed to evaluate the association between fat mass index (FMI) and both wGRS and uGRS.

Informed consent.  Informed consent was signed by parents of all participants. The datasets used and/or 
analysed during the current study are available from the corresponding author on reasonable request.

Results
Description of the study sample: demographics.  The sample was composed of 520 boys and 549 girls. 
Main characteristics of study participants are shown in Supplementary Table 1. The median age of participants 
barely differed between males (14.6 years, IQR: 13.6—15. 7) and females (14.6 years, IQR: 13.5–15.7) (p = 0.722). 
The prevalence of OW/OB was higher in males (22.2%), than in females (18.8%) (p = 0.009).

Associations between SNPs and overweight/obesity: Building and validation of GRS.  Initially, 
104 SNPs potentially associated with BMI were selected (Supplementary Table 2 and were entered in the mul-
tivariate model to build the GRS. From them, we found a final number of 21 SNPs significantly associated with 
OW/OB in the HELENA study Table 1. Table 2 shows the univariate and multivariate model´s odds ratio (OR) of 
each of the selected SNPs for the GRS build up. A forest plot is displayed in Fig. 1 to present the OR´s direction 
(protective/risk) of each SNP. Within our GRS, AMPD1 rs2010899, PPARG​ rs4135275, NR3C1 rs4912905, LPArs 
9,355,296, IL-6 rs1524107, CNTFR rs2183013, IGF1 rs1019731, THRA rs1568400 and FASN rs4246444 had a 
protective role in the prediction of OW/OB whereas NR3C1 rs7701443, NR3C1 rs13182800, CD36 rs3211867, 
CNTF rs2515362, DRD2 rs1800497, FTO rs9939609, CETP rs4783961, NOS2A rs8068149, THRA rs7502966, 
ANGPTL4 rs1044250, LXRβ rs17373080 and PTPN1 rs2143511 increased the risk of OW/OB. Supplementary 
Fig. 2 shows the calibration curves analysing the correspondence between probabilities of overweight and the 
real outcome. It can be observed that there is a good agreement between predicted and actual probabilities,thus, 
the panel of SNPs shows a good adjustment in order to predict OW/OB.

Using the predictABEL R package34, from the multivariate logistic regression model built to predict OW/
OB, an uGRS and a wGRS were derived. The predictive ability of the GRS by means of the ROC curve, AUCs 
and Youden index of uGRS and wGRS models are displayed in Fig. 2. The results of the GRSs´ AUC (uGRS: 
0.7198,wGRS: 0.7336) showed a moderate ability to discriminate OW/OB status. AUC´s comparisons displayed 
statistically significant differences between uGRS and wGRS to predict OW/OB (p = 0.043). The discrimination 
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ability of wGRS and uGRS was internally validated by cross-validation using 10 folds. Both GRS provide robust 
predictions as showed by the AUC results (0.723 and 0.734 for uGRS and wGRS respectively). The distribution 
of uGRS and wGRS values for the groups of NON-OW and OW/OB by boxplots is displayed in Fig. 3. Both 
GRS discriminate between groups, but there is no a cut-off point that can clearly separate NON-OW and OW/
OB groups. The Youden index was 23.5 for uGRS (specificity 69.4%, sensitivity 63.6%), and − 0.126 for wGRS 
(specificity 61.1%, sensitivity 74.6%). A more general analysis of sensitivity, specificity, positive and negative 
predictive value, and accuracy is shown in Table 3.

Associations between GRS and adiposity.  LRM showed a significant association between GRS and 
FMI (p ≤ 2e−16) in both weighted (β = 0.877) and unweighted (β = 0.312) variants for the total sample.

Discussion
In the present study, two GRSs, uGRS and wGRS, including 21 SNPs associated with BMI, were successfully 
developed to assess the risk of overweight and obesity in European adolescents. Hence, to the best of our knowl-
edge, this are the first GRSs with these characteristics in a diversely distributed sample of European adolescents.

There are few previous studies focusing on BMI-specific GRSs with overweight and obesity in European 
pediatric populations and none exclusively in European adolescents, which reinforces the potential of our GRS 
analysis. In a cohort of 1142 Finnish preadolescents, Viljakainen et al.22 constructed a wGRS to predict the risk 
of overweight (1.39-fold increased odds) and obesity (1.41-fold increased odds) using 30 BMI-related SNPs, stat-
ing that their GRS was poor in predicting short-term longitudinal changes in BMI. In two Finnish children and 
adolescent cohorts, Seyednasrollah et al.21 developed two wGRS of 97 and 19 SNPs previously related to the risk 
of obesity, and obtained a lightly better prediction accuracy with the 19-SNP GRS than in our study (AUC = 0.769 
vs. 0.734). However, none of the SNPs used in the two GRSs in European adolescents above mentioned concur 
with the SNPs utilised to develop our GRS.

The majority of the GRSs developed in pediatric and adolescent populations have been performed in non-
European subjects, based on SNPs associated with obesity risk from previous GWAS. Comparatively to the 
European GRSs, the non-European studies provided a fewer number of selected SNPs related to obesity risk to 
develop their GRS. In a cross-sectional study of Brazilian children and adolescents (mean age 11.9 ± 2.8 years)19, 
the BMI-specific wGRS composed of 3 SNPs was associated with a 2.65-fold increased risk of overweight and 
obesity. In a Chinese cohort of children aged 7.3 to 11.1 years, Fang J et al.35 developed an uGRS of 11 BMI-related 
SNPs which explained 0.11 kg/m2 BMI increase in those children carrying BMI susceptibility alleles. Lv D et al.36 

Figure 1.   Forest plot of single nucleotide polymorphisms (SNPs) negatively (OR < 1) and positively (OR > 1) 
associated with risk of OW/OB. Legend: SNPs ordered by chromosome number. Protective SNPs against risk of 
overweight/obesity are shown in the upper part of the forest plot; SNPs with predisposition risk to overweight/
obesity are shown in the bottom part. Multivariate model Odds Ratio (O.R.) and 95% confidence intervals (C.I.) 
displayed.
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positively associated the cumulative effect of 5 BMI-related SNPs GRS to obesity risk by more than sevenfold 
increased odds in individuals carrying 5–7 risk alleles (age 11.6 ± 2.5, N = 2977). Finally, SNPs previously related 
to other cardiometabolic risk factors (hypertension) in a Chinese adolescent population (aged 12.2 ± 3.0 years) 
were used to develop a 3 SNP GRS positively associated to obesity risk37. The increased risk of obesity associ-
ated to the mentioned GRSs in non-European subjects seem to have a consistency to some SNPs showed in the 
present study, despite acknowledging that the subjects origin does not allow to make comparisons in this regard.

The elaboration of a BMI-GRS comprised protector and risk in the same model. Some of those SNPs have 
been significantly associated with the risk of obesity in previous studies. The A allele of FTO rs9939609 polymor-
phism has been consistently associated with higher BMI and waist circumference in several studies in adults11, 
adolescents9 and children38. In cohorts of children and adults with European ancestry, Frayling et al.11 and Willer 
et al.39 found the strongest associations of the A risk allele of FTO rs9939609 with BMI. These findings confirm 
the role of FTO rs9939609 in our GRS as risk factor to OW/OB. In a study by Bokor et al.40, CD36 rs3211867 
increased the risk of obesity by almost two folds in a cohort of Hungarian obese (N = 307) and normal weight 
(N = 339) adolescents. Although the study had two independent samples with limited sample size, the findings 
are consistent with the results of our study. Moreover, in a pooled-study by Solaas et al.41, authors observed 
significant association between LXRβ rs17373080 and the risk of T2DM and OW/OB by 1.59-fold increased 
odds. Equally, in our study, LXRβ rs17373080 SNP was associated with a 1.38 fold higher risk of OW/OB. Of 
note, the last two studies included participants from the HELENA cohort. On the other hand, the present study 
showed that THRA rs1568400 SNP was negatively associated with the risk of OW/OB whereas the same SNP 
was associated with higher BMI in a cohort of Spanish adults42.

Other SNPs included in the GRS developed in the present study have also been associated with obesity-related 
cardiometabolic risk factors in ethnically diverse adults, but not with overweight or obesity risk. Thus, in a Euro-
pean population, DRD2 rs180049743 modified the relationship between birth weight and adulthood educational 
attainment in Finnish subjects and FASN rs424644444 attenuated the effect on low density lipoproteins (LDL) 
peak particle diameter when consuming a high amount of fat in a Canadian cohort. Within non-European back-
ground, in Chinese population, NR3C1 rs770144345 was significantly associated with a higher risk of metabolic 
syndrome and CC alleles of IL-6 rs152410746 had a higher risk of developing nephropathy in T2DM subjects. In 
addition, PPARG​ rs413527547 was positively associated with glycated hemoglobin and fasting plasma glucose in 
Taiwanese mental health patients. In pregnant Turkish women, LPA rs935529648 was positively related to vascular 

Table 1.   Main characteristics of the 21 single nucleotide polymorphisms (SNPs) included in the genetic 
risk score. Association of SNPs in relation to body mass index (BMI) displayed in p values (p). AMPD1 
(Adenosine Monophosphate Deaminase 1); ANGPTL4 (Angiopoietin like protein 4); BMI (Boy Mass Index); 
CD36 (cluster of differentiation 36); CETP (Cholesteryl ester transfer protein); CNTF (Ciliary Neurotrophic 
Factor); CNTFR (Ciliary Neurotrophic Factor Receptor); DRD2 (Dopamine Receptor D2); FASN (Fatty acid 
synthase); FTO (Fat mass and obesity-associated gene); HWE (Hardy–Weinberg Equilibrium); IGF1 (Insulin 
Like Growth Factor 1); IL-6 (Interleukin-6); LPA (Lipoprotein A); LXRB (Liver X receptor beta); MAF (Minor 
allele frequency); NOS2A (Nitric oxide synthase 2); NR3C1 (Nuclear receptor subfamily 3, group C, member 
1); PPARG​ (Peroxisome Proliferator Activated Receptor Gamma); PTPN1 (Protein Tyrosine Phosphatase Non-
Receptor Type 1); THRA (Thyroid Hormone Receptor Alpha).

rs code Nearest gene Alleles (major/minor) MAF p Genotyping success rate HWE

rs2010899 AMPD1 A/C 0.44 0.012 99.8 0.349

rs4135275 PPARG​ A/G 0.19 0.024 99.9 0.655

rs4912905 NR3C1 C/G 0.23 0.004 100.0 0.665

rs7701443 NR3C1 A/G 0.40 1.35 × 10–4 100.0 0.127

rs13182800 NR3C1 C/A 0.24 5.96 × 10–4 99.9 0.183

rs9355296 LPA G/A 0.13 0.013 100.0 0.216

rs1524107 IL-6 G/A 0.07 0.006 100.0 0.879

rs3211867 CD36 C/A 0.07 0.033 100.0 0.728

rs2183013 CNTFR C/G 0.17 0.001 100.0 0.934

rs2515362 CNTF A/G 0.44 0.024 99.9 0.184

rs1800497 DRD2 G/A 0.18 0.049 99.8 0.763

rs1019731 IGF1 C/A 0.11 0.005 100.0 0.744

rs9939609 FTO T/A 0.40 5.81 × 10–4 100.0 0.322

rs4783961 CETP A/G 0.50 0.014 100.0 0.558

rs8068149 NOS2A G/A 0.46 0.010 100.0 0.136

rs7502966 THRA A/G 0.44 0.025 99.7 0.264

rs1568400 THRA A/G 0.26 0.023 100.0 0.349

rs4246444 FASN C/A 0.27 0.008 94.7 0.461

rs1044250 ANGPTL4 G/A 0.29 0.005 99.6 0.051

rs17373080 LXRβ G/C 0.32 0.005 99.7 0.523

rs2143511 PTPN1 A/G 0.43 0.004 99.9 0.337
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Table 2.   Association of the 21 single nucleotide polymorphisms (SNPs) of the genetic risk score with OW/OB. 
SNPs ordered by chromosome number and protector/risk nature of the SNP. *Univariate (individual model 
of SNP-Overweight/Obesity association) and multivariate model (multiple model SNP-Overweight/Obesity 
association) displayed with Odds Ratio (O.R.) and 95% confidence interval (C.I.).

rs code Chromosome

Univariate* Multivariate*

O.R. (95% C.I.) p O.R. (95% C.I.) p

rs2010899 1 0.822 (0.665–1.014) 0.068 0.749 (0.596–0.939) 0.012

rs4135275 3 0.738 (0.556–0.967) 0.031 0.709 (0.522–0.951) 0.012

rs4912905 5 0.810 (0.630–1.034) 0.096 0.639 (0.467–0.867) 0.024

rs9355296 6 0.636 (0.448–0.886) 0.009 0.629 (0.430–0.901)  < 0.001

rs1524107 7 0.602 (0.363–0.950) 0.038 0.481 (0.278–0.795) 0.014

rs2183013 9 0.674 (0.495–0.903) 0.010 0.595 (0.425–0.818) 0.033

rs1019731 12 0.681 (0.468–0.967) 0.038 0.571 (0.379–0.837) 0.049

rs1568400 17 0.794 (0.623–1.006) 0.059 0.742 (0.571–0.957) 0.023

rs4246444 17 0.756 (0.592–0.957) 0.022 0.711 (0.548–0.914) 0.009

rs7701443 5 1.170 (0.946–1.447) 0.146 1.919 (1.432–2.579) 0.005

rs13182800 5 1.374 (1.094–1.721) 0.006 1.771 (1.340–2.344)  < 0.001

rs3211867 7 1.487 (1.009–2.159) 0.040 1.576 (1.029–2.384) 0.006

rs2515362 11 1.189 (0.973–1.452) 0.090 1.283 (1.032–1.594) 0.002

rs1800497 11 1.204 (0.924–1.559) 0.162 1.329 (0.998–1.761) 0.024

rs9939609 16 1.496 (1.219–1.838)  < 0.001 1.575 (1.263–1.968) 0.005

rs4783961 16 1.272 (1.034–1.568) 0.023 1.325 (1.058–1.663) 0.014

rs8068149 17 1.190 (0.974–1.456) 0.088 1.331 (1.071–1.656) 0.010

rs7502966 17 1.165 (0.952–1.427) 0.138 1.287 (1.031–1.607) 0.025

rs1044250 19 1.211 (0.976–1.500) 0.079 1.390 (1.100–1.754) 0.006

rs17373080 19 1.313 (1.061–1.624) 0.012 1.388 (1.102–1.748) 0.005

rs2143511 20 1.294 (1.056–1.588) 0.013 1.386 (1.108–1.736) 0.004

Figure 2.   Receiver operating characteristics (ROC) curves of the two genetic risk scores, unweighted (uGRS) 
and weighted (wGRS). Areas under curves (AUC) are indicated. The straight line represents the ROC expected 
by chance only.
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inflammation as future cardiovascular event indicator. Finally, in a large adult cohort of 5 different ancestry 
groups, CETP rs478396149 was involved in sleep-associated adverse high density lipoproteins (HDL) profiles.

In contrast, as far as we know, several SNPs included our GRSs (i.e., AMPD1 rs2010899, NR3C1 rs4912905, 
CNTFR rs2183013, IGF1 rs1019731 as protector factors and NR3C1 rs13182800, CNTF rs2515362, NOS2A 
rs8068149, THRA rs7502966, ANGPTL4 rs1044250 and PTPN1 rs2143511 as risk factors) are new predictive 
factors, as they had not previously been associated with obesity or obesity related diseases nor had been signifi-
cantly relevant in previous studies.

Additionally, the present GRS was positively tested to evaluate its ability to predict the risk of overweight and 
obesity in other adiposity estimates (FMI). Previous studies have also identified potential interactions between 
an obesity-GRS and diet on FMI in English children (9yrs)50. Monnereau et al.51 constructed 15 SNPs-wGRS 
related to child BMI in children (6yrs) from Netherlands significantly associated to total fat mass. More so, 
another study52 showed a BMI-based GRS significantly associated to higher body fat mass in Finnish children 
and adolescents.

Although using the external weight from meta-analyses is the gold standard to build a GRS, when the external 
weights are not available, the uGRS is commonly used35,53. In the present approach, internal weights from the 
genetic effects of the same study were used. The wGRS outperformed the uGRS in terms of statistical power (0.734 
vs. 0.723). Conventionally, it is accepted that the AUC in a ROC analysis should be > 0.8 to be of clinical value 
for screening54. When constructing the GRS models, AUC fell short of this threshold combining genetic factors 
alone. As SNPs themselves have little predictor capacity, we should consider the results obtained to construct 
the uGRS and wGRS as statistically acceptable, so our wGRS could be replicated in other cohorts with similar 
characteristics. Thus, our findings add a significant contribution to obesity-specific GRS that may improve the 
predictive values of obesity biomarkers in adolescents.

Figure 3.   Boxplot of the distribution of unweighted genetic risk score (uGRS) and weighted genetic risk score 
(wGRS). Legend: Values for the groups of Non-overweight (NON-OW) and Overweight/Obesity (OW/OB).
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Other authors55 suggest that traditional predictors, such as family history and childhood obesity have stronger 
predictive power than models based on the established genetic variants. Nonetheless, the limited predictive ability 
of genetic variants does not undervalue the role of gene discovery for obesity as, based on the literature, genetic 
analyses have already provided with promising insights involving BMI regulation6. As such, the present GRSs, or 
future GRS comprising additional SNPs from other genes which do not have (a priori) previous reported associa-
tions with obesity, could yield promising results to minimise the risk of cardiovascular events related to obesity.

However, the present study has some limitations. The results should be validated in larger pediatric study 
populations, also using obesity incidence, in order to test the reliability of this obesity-specific GRS in other popu-
lations with similar ethnicity. Despite that some studies on children reporting the prediction of adulthood obesity 
efficiently 20 to 30 years later21, different genetic factors might affect the short-term changes in BMI, especially 
during periods of rapid growth56. Due to the cross-sectional nature of the study, no cause-effect relationship can 
be determined. Additionally, although the model to develop the GRSs was internally validated performing tenfold 
cross validation analysis, we understand that the optimal situation would have been an external validation in an 
independent cohort. Moreover, only selected risk loci are available in the HELENA study. Since the established 
common variants from GWAS explain a small proportion of the BMI variation6, it is likely that other loci from 
rarer variants, still to be discovered, will emerge when larger sample sizes are included in GWAS. Furthermore, 
there is no data available regarding the relatedness or the ethnic origins among the studied participants; the allele 
frequencies and their effect size might be different from non-European populations and the outcome should not 
be reproduced to other ethnicities. Since the HELENA study selected genes based on candidate genes instead 
of GWAS, the overlapping effect observed between SNPs of European and non-European adolescents could be 
possible. More common SNPs in non-European GRSs were found than in European GRSs. This finding could be 
due to the higher number of GRSs developed in other ethnicities in comparison to the number of GRS performed 
in European population. Also, we used the same data in the SNPs selection process and in the building model, 
thus little bias can be produced. Therefore, the results showed in the present study should be considered carefully. 
Further studies with larger sample size could provide key information of this potential genetic predisposition 
to obesity. On the other hand, the present study has also some strengths. The multicentric design of HELENA 
study involved the participation of adolescents from 10 European cities. This allowed the researchers to use a 
large database with relevant and diverse information from different populations across Europe. Additionally, only 
few GRSs to predict the overweight and obesity risk have been developed particularly in European adolescents, 
an understudied population from the early treatment and prevention perspective21,22. Similarly to Viljakainen 
et al.22, the proposed genetic score of predisposition to obesity defined in this study might efficiently contribute 
to discern population at risk for overweight and obesity and not just obesity alone.

In conclusion, our findings suggest that the GRSs developed in the present study (uGRS and wGRS) could 
be considered as a useful genetic tool to evaluate individual’s predisposition to OW/OB, allowing to advance in 
the prevention and management of the disease from early stages in life. Future GRS development with larger 
samples will be able to detect new variants previously not related to obesity that could influence the genetic risk 
of obesity, other than the common ones.

Table 3.   Specificity, sensitivity, negative and positive predictive value and accuracy analysis presented in 
percentages (%). Abbreviations: uGRS (Unweighted Genetic Risk Score); wGRS (Weighted Genetic Risk 
Score); Acc (accuracy); NPV (negative predictive value); PPV (positive predictive value); Sens (sensitivity); 
Spec (specificity).

Cut-off Spec Sens NPV PPV Acc Cut-off Spec Sens NPV PPV Acc

uGRS wGRS

30 100 0.42 77.99 100 78.01 4.14 100 0.42 77.99 100 78.01

29 99.88 3.81 78.56 90.00 78.67 3.51 99.88 5.50 78.86 92.85 79.04

28 99.15 6.35 78.89 68.18 78.67 3.30 99.15 8.89 79.34 75.00 79.23

27 96.39 13.55 79.74 51.61 78.11 2.98 96.63 15.25 80.09 56.25 78.67

26 92.07 26.69 81.59 48.83 77.64 2.61 92.07 27.54 81.76 49.61 77.82

25 83.31 44.91 84.22 43.26 74.83 2.26 83.31 48.72 85.15 45.27 75.67

24 69.38 63.55 87.04 37.03 68.10 1.88 69.38 65.25 87.57 37.65 68.47

23 54.74 73.72 88.03 31.57 58.93 1.50 54.74 79.23 90.29 33.15 60.14

22 39.13 89.40 92.87 29.38 50.23 1.10 39.13 89.40 92.87 29.38 50.23

21 26.17 93.22 93.16 26.34 40.97 0.77 26.17 93.22 93.16 26.34 40.97

20 14.04 97.88 95.90 24.39 32.55 0.35 14.04 97.03 94.35 24.23 32.36

19 7.92 98.72 95.65 23.30 27.97 0.03 7.92 98.72 95.65 23.30 27.97

18 2.88 99.57 96.00 22.50 24.22 -0.54 2.88 99.57 96.00 22.50 24.22

17 1.32 100 100 22.30 23.10 -0.82 1.32 100 100 22.30 23.10

16 0.48 100 100 22.15 22.45 -1.20 0.48 100 100 22.15 22.45

15 0.00 100 100 22.09 22.17 -1.67 0.12 100 100 22.09 22.17
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