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Abstract
Purpose The role of polyphenol intake during adolescence to prevent metabolic syndrome (MetS) is little explored. This 
study aimed to evaluate the association between intake of total polyphenols, polyphenol classes and the 10 most consumed 
individual polyphenols with MetS risk in European adolescents.
Methods Of the cross-sectional HELENA study, 657 adolescents (54% girls; 14.8% overweight; 12.5–17.5 year) had a fasting 
blood sample and polyphenol intake data from two non-consecutive 24-h recalls matched with the Phenol-Explorer database. 
MetS was defined via the pediatric American Heart Association definition. Multilevel linear regressions examined the asso-
ciations of polyphenol quartiles with MetS components, while logistic regression examined the associations with MetS risk.
Results After adjusting for all potential confounders (socio-demographics and nine nutrients), total polyphenol intake, 
polyphenol classes and individual polyphenols were not associated with MetS risk. From all MetS components, only BMI 
z-score was modestly inversely associated with total polyphenol intake. Further sub analyses on polyphenol classes revealed 
that flavonoid intake was significantly associated with higher diastolic blood pressure and lower BMI, and phenolic acid 
intake was associated with higher low-density cholesterol. For individual polyphenols, the above BMI findings were often 
confirmed (not independent from dietary intake) and a few associations were found with insulin resistance.
Conclusion Higher intakes of total polyphenols and flavonoids were inversely associated with BMI. No consistent associa-
tions were found for other MetS components.
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Abbreviations
AHA  Pediatric American Heart Association
BMI  Body mass index
DBP  Diastolic blood pressure
HDL-c  High-density lipoprotein
HOMA-IR  Homeostasis model of assessment of insulin 

resistance
LDL-c  Low-density lipoprotein
Q  Quartile
SBP  Systolic blood pressure

TG  Triglycerides
WC  Waist circumference
WHR  Waist–hip ratio

Introduction

Metabolic syndrome (MetS) is a cluster of metabolic abnor-
malities, including obesity, dyslipidemia, hypertension, and 
insulin resistance [1], increasing the risk of cardiovascular 
disease and type 2 diabetes [2]. MetS is a major worldwide 
public health problem, also in children and adolescents [1]. 
Subclinical metabolic changes during childhood can track 
towards disease in adulthood [3]. Dietary behaviour, such 
as consumption of plant-based foods seems to help in the 
prevention and treatment of MetS clinical manifestations [4].
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Within plant-based foods, several bioactive compounds 
have been considered as health-stimulating. According to 
their chemical structures, polyphenols can be divided into 
four main classes: flavonoids, phenolic acids, stilbenes, and 
lignans [5]. Dietary polyphenols may have a potentially ben-
eficial effect on MetS components, by reducing body weight, 
blood pressure, and blood glucose and by improving lipid 
metabolism [6, 7]. For example, total polyphenol intake was 
negatively associated with MetS and some of its components 
(waist circumference, blood pressure, and lipid and glucose 
alterations) in Polish adults of the HAPIEE study [8] and 
a higher polyphenol intake was inversely associated with 
hypertension in the PEDIMED study [9]. Some polyphenol 
classes might drive these potential associations: a higher 
intake of flavanones, flavones and lignans were significantly 
associated with lower BMI over 6 years in a middle-aged 
general population [10]. However, inconsistent associations 
have been shown in different trials of polyphenol-rich foods 
and MetS [7]. Yet, such studies have not been undertaken in 
adolescents. Since polyphenol intake in adolescents seems to 
be very low [11] and since health factors track towards adult-
hood, studying the polyphenol-MetS relation in adolescents 
is needed to help early interventions in promoting healthy 
eating behaviour and preventing several chronic diseases.

Therefore, this study aimed to evaluate the association of 
polyphenol intake with MetS in European adolescents from 
the “Healthy Lifestyle in Europe by Nutrition in Adoles-
cence” (HELENA) cross-sectional study. Due to the above 
mentioned variances depending on subtypes of polyphenols 
and MetS components in literature, several sub-analyses 
were undertaken. First, polyphenol intake was considered 
as total polyphenol, polyphenol classes and the ten most 
consumed individual polyphenols. Second, all individual 
components of MetS were also considered: BMI, waist cir-
cumference (WC), waist-hip ratio (WHR), systolic and dias-
tolic blood pressure (SBP and DBP, respectively), triglycer-
ides (TG), total cholesterol (TC), HDL cholesterol (HDL-c), 
LDL cholesterol (LDL-c), glucose and insulin resistance.

Materials and methods

Study population

This cross-sectional study is based on the HELENA study, 
a multicenter study on lifestyle and nutrition among 3528 
adolescents aged 12.5–17.5 years from ten European cit-
ies: Athens and Heraklion (Greece), Dortmund (Ger-
many), Ghent (Belgium), Lille (France), Pecs (Hungary), 
Rome (Italy), Stockholm (Sweden), Vienna (Austria), and 
Zaragoza (Spain). Data in the HELENA study were col-
lected between 2006 and 2007, via random cluster sampling 
(all adolescents from a selection of classes) and stratified 

by geographical location, age and socio-economic status. 
Details on the recruitment methods, design and inclusion 
criteria have been reported elsewhere [12]. The study pro-
tocol was permitted by the ethics committee of each city 
involved and written informed consent was retrieved from 
all participants and their parents.

In the HELENA study, a total of 1089 blood samples 
were collected. Data on food intake (two 24-h dietary 
recalls) were not available from Heraklion and Pecs, so 
subjects from these cities (n = 211) were excluded. Also, 
adolescents who took cardiovascular medication (n = 5) or 
who had no valid data on 24-h dietary recalls and all MetS 
components (n = 216) were excluded. For the present analy-
sis, 657 adolescents were included (Supplemental Figure 1). 
Included and excluded participants did not differ according 
to age, sex, BMI and lifestyle, but those included were more 
from non-Mediterranean countries, had more often Tanner 
3 stadium and more mid-category maternal education (data 
not shown).

Demographic and lifestyle measurements

Data on sex, age, city, and socio-economic status were 
recorded by a standardised self-reported questionnaire [13]. 
Socio-economic status was examined by parental education 
and the Family Affluence Scale (FAS). The parental educa-
tion level of mother and father was defined as one of three 
levels (lower education, higher secondary education or uni-
versity education). The FAS, which was previously validated 
[14], was used as an indicator of material wealth in the fam-
ily. It was based on information about the number of cars 
in the family (0–3 depending on amount) and computers at 
home (0–3 depending on amount), internet availability at 
home (0 no, 1 yes), and having one’s own bedroom (0 no, 
1 yes). Scores range from 0 to 4 as low FAS score, and 5–8 
as high-FAS score. Smoking status, physical activity (hour/
week) and alcohol consumption were evaluated by question-
naire data. Pubertal status was based on the development 
of breast and pubic hair in females and the development 
of genital and pubic hair in males according to Tanner and 
Whitehouse [15]. The cities Athens in Greece, Rome in Italy, 
and Zaragoza in Spain were considered as Mediterranean.

Metabolic syndrome

Measurement of weight, height, and WC has been previ-
ously described [16]. BMI z-scores were calculated using 
the British Growth Reference Data from the Child Growth 
Foundation [17] and classified according to the International 
Obesity Task Force. SBP and DBP were measured twice in 
a sitting position with a 10 min interval in-between and the 
lowest reading was recorded [13], using the same type BP 
device approved by the European Hypertension Society. A 
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blood sample was collected at school between 8 and 10 A.M. 
after a 10-h overnight fast by venipuncture in a randomly 
selected one-third subset of the HELENA participants. 
Blood was collected in tubes for serum (blood lipid profile) 
and heparinized tubes for plasma (insulin), immediately 
placed on ice and centrifuged, aliquoted and transported at 
4–7 °C (for a maximum of 14 h) to the central laboratory 
in IEL (Institut für Ernährungs- und Lebensmittelwissen-
schaften), Bonn University. Glucose, total cholesterol and 
HDL-c were assessed on fresh serum within 1 day of blood 
extraction by enzymatic methods (Dade Behring, Schwal-
bach, Germany). Heparin plasma was stored at − 80 °C until 
analysed for insulin concentrations using an Immulite 2000 
analyser (DPC Bierman GmbH, Bad Nauheim, Germany). 
For insulin resistance, the homeostasis model assessment 
(HOMA-IR) was calculated [18].

In this study, MetS was defined as recommended by the 
pediatric American Heart Association (AHA) [19], i.e., 
three or more of the following risk factors: central obe-
sity (WC ≥ 90th percentile for age, sex, and race/ethnic-
ity), high TG concentrations (≥ 110 mg/dL), low HDL-c 
(≤ 10th percentile for race and sex), impaired fasting glu-
cose (≥ 110 mg/dL), elevated blood pressure (≥ 90th per-
centile for age, sex, and height, both of SBP and DBP). The 
association of MetS according to different definitions with 
socio-demographic variables and diet can be found in Sup-
plemental Table 1, but only the AHA definition was used for 
the current publication.

Dietary assessment

Using the HELENA-Dietary Assessment Tool, dietary 
data were assessed from a 24-h recall on 2 non-consecutive 
days, within a time-span of 2 weeks, but not on Fridays and 
Saturdays. Detailed quantitative information was compiled 
using household measurements or pictures of portion sizes 
for each item chosen. This tool has been validated in Flem-
ish adolescents [20]. The nutrient composition of the diet 
(mean of 2 days) was calculated with the German Food Code 
and Nutrient Data Base (Bundeslebensmittelschlüssel, BLS, 
version II.3.1).

The intake of polyphenols was evaluated using the Phe-
nol-Explorer database [21] accounting for cooking and pro-
cessing of foods, as previously described [11]. Polyphenol 
content values detailed in the Phenol-Explorer database are 
obtained by different analytical methods but most often by 
‘chromatography’. Polyphenol intakes per person were esti-
mated by multiplying the polyphenol content in a food by 
the amount of this food item eaten per day; then taking the 
sum over the day per individual; and then taking the mean 
over 2 days. Total polyphenol intake was calculated as the 
sum of individual polyphenols intake.

Statistical analyses

The statistical analyses were conducted with the software 
package IBM SPSS statistics version 23 (IBM, New York, 
USA) and the level of significance was set at two-sided 
p < 0.05. Data were presented as mean ± standard devia-
tion or as mean ± standard errors and percentages. The log 
or square root transformation was applied to fit normality 
when required (for outcomes in linear regression), but esti-
mated means and standard errors were back-transformed for 
interpretation. Dietary polyphenol intakes were expressed 
as mg of polyphenols per 1000 kcal to correct for total 
energy intake (correlation between raw polyphenol intake 
and energy intake was r = 0.381; p ≤ 0.001). Demographic 
and lifestyle parameters (as potential confounders) were 
evaluated depending on quartiles of total polyphenol intake 
and depending on association with MetS. These differences 
between total polyphenol intake quartiles were tested using 
ANOVA for continuous variables and Chi-squared test for 
categorical variables.

Multilevel regressions were chosen to adjust for the 
clustering within countries. Multiple linear regression was 
applied to assess the associations between polyphenol intake 
(as quartiles of energy-adjusted intake) and components of 
MetS. Confounder choice was based on significant associa-
tions with either polyphenol intake or MetS. Model 1 was 
adjusted for age, sex, European region, BMI z-score and 
Tanner stage. Model 2 was additionally adjusted for intakes 
of the following nutrients: mono- and disaccharides, poly-
saccharides, fibre, protein, monounsaturated fatty acids, cho-
lesterol, and vitamin C. For all significant findings based on 
overall polyphenol quartile difference, the regression was 
repeated with the continuous polyphenol variable to verify 
linear, quadratic or cubic relations (data not shown in tables, 
just mentioned in text). Adjustment for BMI or not did not 
change the results for the other MetS components. Percent-
age of explained variance by polyphenols was reported as 
change in R2 after including the polyphenol variable (ΔR2).

A multilevel logistic regression analysis was performed 
to assess the relationship between polyphenol intake and 
having at least one of the MetS components at risk follow-
ing the AHA definition. This classification was chosen since 
very few adolescents (< 5%) were classified as having MetS 
(thus being at risk for at least 3 MetS components). Again, 
these regressions were adjusted according to model 1 and 2.

Results

General characteristics of the subjects

The median and interquartile range of polyphenol intake was 
347.2 mg/day (171.1; 569.5) and 162.2 mg/day/1000 kcal 
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(91.4; 566.5). Based on AHA, 3.7% or 24 adolescents 
(Q1 = 6 adolescents, Q2 = 5 adolescents, Q3 = 6 adoles-
cents, and Q4 = 7 adolescents) had MetS and 43.1% had at 
least one risk factor, 9.7% had high glucose, 30.6% had high 
waist circumference, 9.6% had high triglyceride concentra-
tions, 2.3% had low HDL, and 8.1% had high blood pressure. 
Overweight and obesity prevalence was 14.8% and 5.3%, 
respectively.

Baseline characteristics of the 657 participants (54% girls) 
are presented in Table 1. Participants with a higher polyphe-
nol intake were older (p = 0.019), from Non-Mediterranean 
countries (p < 0.001), had lower BMI z-score (p = 0.004) and 
had higher pubertal status (p = 0.008). Moreover, a higher 
intake of total carbohydrates, mono- and disaccharides, 
fibre and vitamin C and a lower intake of polysaccharides, 
protein, monounsaturated fatty acids, and cholesterol were 
associated with a higher intake of polyphenols.

Association of demographic characteristics and nutrient 
composition of the diet with MetS can be found in Supple-
mental Table 1. Significant differences in MetS were found 
depending on the European region, education of mother, 
education of father, BMI z-score, mono- and disaccharides, 
monounsaturated fatty acids, cholesterol and energy intake. 
These differences were almost the same when using different 
MetS definitions (AHA, NCEP-ATP, IDF and WHO) and all 
following analyses gave the same results when using these 
different MetS definitions.

Metabolic syndrome and polyphenol intake

There was no difference in overall MetS depending on 
energy-adjusted quartiles of polyphenol intake (Table 2). 
From the MetS-related components, only BMI z-score 
had a significant association with energy-adjusted quar-
tiles of polyphenol intake (ΔR2 = 0.006; linear relation was 
confirmed), a higher intake was reflected in a lower BMI 
z-score, independent from other nutrients.

Metabolic syndrome and polyphenol class intake

The metabolic variables according to quartiles of energy-
adjusted intake of polyphenol classes are presented in Sup-
plemental Table 2. Again, none of the polyphenol classes 
was related to overall MetS. Flavonoid consumption was sig-
nificantly associated with lower BMI z-score (linear relation 
was confirmed). In addition, flavonoids had non-linear asso-
ciations (respectively; quadratic instead of linear relation 
was confirmed) with systolic and diastolic blood pressure 
(raw or z-score) after adjusting for all potential confound-
ers: only the lowest flavonoid quartile had low blood pres-
sure. Phenolic acid consumption was only associated with 
higher LDL-c (linear relation was confirmed). Stilbenes did 
not show significant associations. Lignan consumption was 

significantly associated with BMI z-score (quadratic rela-
tion was confirmed), but only in model 1 (no adjustment 
for nutrients). Change in R2 by polyphenols was around 1%.

Metabolic syndrome and individual polyphenols

The 10 most consumed individual polyphenols were not 
associated with overall MetS (Supplemental Table 3). A 
lower BMI z-score was found for higher consumers of proan-
thocyanidin polymers (> 10mers), proanthocyanidin 4–6 oli-
gomers, proanthocyanidin 7–10 oligomers, proanthocyani-
din trimers, (−)-epicatechin, and (+)-catechin, but not after 
adjustment for nutrients (only in model 1; linear relation was 
confirmed). For 5-caffeoylquinic acid, the opposite direction 
was found for BMI z-score (linear relation was confirmed) 
and Procyanidin dimer B2 had a quadratic association with 
BMI z-score, but again only in model 1. Ferulic acid intake 
was associated with WC (only a linear trend p = 0.077 was 
confirmed) in model 2: quartile 2 and 3 were higher WC than 
quartile 4 (highest quartile). (+)-Catechin intake was associ-
ated with lower WC z-score in model 1 (linear relation was 
confirmed). HOMA-IR was in a non-linear way (quadratic 
instead of linear relation confirmed) significantly different 
in model 1 depending on (−)-epicatechin and procyanidin 
dimer B2 intake: lowest for quartile 1 and other quartiles 
higher. Change in R2 by polyphenols was around 1%.

Food sources

To translate these findings into foods consumed, the main 
food sources of total polyphenols, polyphenol classes and 
individual polyphenols are shown in Supplemental Table 4. 
Chocolate products (19%), apples and pears (16%), and 
fruit and vegetables juices were the main sources of total 
polyphenol intake and flavonoid intake, while coffee (28%), 
apples and pears (11%), and savoury snacks (9%) were the 
top three major food sources of phenolic acids.

Discussion

To our knowledge, this is the first observational study that 
examined associations of polyphenol intake (total, classes 
and the ten most consumed) with MetS and its components 
in adolescents. Because of the cross-sectional study design, 
we cannot exclude the possibility of reverse causation. The 
most consistent finding was a significant inverse association 
between polyphenol intake (total and flavonoid in specific) 
and BMI z-score. The effect size was 0.3 standard deviation 
difference in BMI z-score for lowest vs highest polyphe-
nol quartile, which is larger than those reported by previ-
ous studies [8, 22, 23]. Nevertheless, we could not confirm 
the main hypothesis of polyphenol intake (total, classes or 
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Table 1  General characteristics of the HELENA participants according to energy-adjusted quartiles of polyphenol intake

Q1 (n = 148) Q2 (n = 173) Q3 (n = 178) Q4 (n = 158) pa

Total polyphenols (mg/1000 kcal) 51.8 ± 22.4 121.8 ± 22.1 213.9 ± 32.6 458.9 ± 281.8
Flavonoids (mg/1000 kcal) 48.4 ± 33.7 106.5 ± 41.5 176.7 ± 56.8 352.3 ± 238.1
Phenolic acids (mg/1000 kcal) 15.1 ± 15.7 28.6 ± 27.5 47.7 ± 48.2 105.8 ± 110.8
Stilbenes (mg/1000 kcal) 0.04 ± 0.15 0.03 ± 0.12 0.04 ± 0.14 0.14 ± 0.60
Lignans (mg/1000 kcal) 0.97 ± 3.5 1.25 ± 4.04 1.21 ± 4.51 0.87 ± 3.30
Other polyphenols (mg/1000 kcal) 7.3 ± 7.6 10.6 ± 10.8 13.9 ± 14.0 14.9 ± 14.6
Gender—girls (%) 47 51 55 61 0.09
Age (years) 14.6 (1.2)b 14.6 (1.3)b 14.7 (1.2) 14.9 (1.2) 0.019
European region (%) < 0.001
 Mediterranean countries 39 39 24 8
 Non-Mediterranean countries 61 61 76 92

Education of mother (%) 0.23
 Lower (secondary) education 40 27 29 34
 Higher secondary education 32 35 37 34
 Higher education or university degree 28 38 34 32

Education of father (%) 0.48
 Lower (secondary) education 42 33 31 33
 Higher secondary education 26 30 35 28
 Higher education or university degree 32 37 34 38

Family affluence scale (FAS) (%) 0.54
 Low-FAS score 46 45 39 41
 High-FAS score 54 55 61 59

Smoking status (%) 0.15
 Never 57 62 71 58
 Former smoker 22 17 14 22
 Current smoker 21 21 15 20

Alcohol use (%) 0.06
 No 82 79 74 70
 Yes 18 21 26 30

Physical activity (min/day) 701 ± 616 737 ± 562 737 ± 587 766 ± 561 0.82
BMI z-score 0.64 ± 1.09b 0.50 ± 1.13b 0.29 ± 1.07 0.23 ± 1.06 0.004
Tanner stage (%) 0.008
 Tanner stage 1 11 14 10 7
 Tanner stage 2 25 30 29 15
 Tanner stage 3 48 39 46 51
 Tanner stage 4 16 17 15 27

Carbohydrates (g/day) 118.7 ± 13.6b 122.9 ± 14.9b 123.3 ± 13.8 126.5 ± 14.2 0.001
 Monosaccharides and disaccharides (g/day) 50.3 ± 15b 56.8 ± 17.4b 60.5 ± 16.1b 66.6 ± 14.5 < 0.001
 Polysaccharides (g/day) 65.2 ± 10.8b 63.5 ± 12.7b 61.4 ± 10.7 58.9 ± 9.8 < 0.001
 Fibre (g/day) 7.6 ± 1.6b 8.2 ± 1.8b 8.7 ± 1.9 9.2 ± 2.2 < 0.001

Proteins (g/day) 42.2 ± 7.1b 39.5 ± 6.7b 38.7 ± 6.6b 37.0 ± 5.4 < 0.001
Lipids (g/day) 37.8 ± 4.8 37.2 ± 5.1 37.5 ± 4.9 36.8 ± 5.4 0.54
 Saturated fatty acids (g/day) 15.7 ± 2.3 15.6 ± 2.6 15.6 ± 2.6 15.8 ± 2.9 0.96
 Monounsaturated fatty acids (g/day) 14.0 ± 2.2b 13.5 ± 2.2b 13.7 ± 2b 12.9 ± 2 0.004
 Polyunsaturated fatty acids (g/day) 5.2 ± 1.4 5.2 ± 1.5 5.3 ± 1.3 5.3 ± 1.3 0.92
 Cholesterol (mg/day) 159.6 ± 41.9b 147.0 ± 36.5 146.8 ± 36 139.7 ± 33.6 0.001

Minerals (g/day) 17.4 ± 4.8 17.4 ± 5 16.7 ± 3.7 16.9 ± 4.7 0.77
Vitamins
 Vitamin B (mg/day) 26.4 ± 9.5 26.3 ± 8.2 24.8 ± 6.1 25.4 ± 7.4 0.83
 Vitamin C (mg/day) 88.7 ± 44.2b 114 ± 65.8b 120 ± 67.2 133.2 ± 76.8 < 0.001
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individual) and lower overall MetS. This is probably because 
of the low prevalence of MetS in the HELENA participants 
(1.6–3.8% depending on the definition used [24]).

In addition, a few contradictory findings were found like 
higher LDL-c by phenolic acid intake and some non-linear 
associations for certain polyphenols. A biological rationale 
for non-linear associations is that a beneficial effect might 
only be seen in extreme values of polyphenol intake (quad-
ratic) or in a moderate consumption (U-shaped relation). For 
example, one meta-analysis showed mostly non-linear asso-
ciations with type 2 diabetes [25]. Especially as polyphenol 
intake in our adolescent population is low, the advantageous 
effects might only be visible in the highest quartile. Unless 
other studies confirm these findings, we cannot rule out that 
our findings were due to multiple testing.

Metabolic syndrome and total polyphenol intake

In the HELENA study, total polyphenol intake was not asso-
ciated with the risk of MetS, which is in agreement with 
the results from a Tehranian healthy adult population [26]. 
It should be considered that the prevalence of MetS in the 
HELENA study was low and that not all MetS components 
might be influenced by polyphenol intake. Interestingly, 
only lower BMI z-score was significantly associated with 
polyphenols in the HELENA population. In fact, adipose 
tissue quality for which BMI is a parameter, can stimulate 
over time the other MetS factors, such as increasing blood 
pressure, dyslipidemia, insulin resistance, inflammation, etc. 
[27]. As mechanistic pathway, polyphenols have been asso-
ciated with gut microbiota that affect obesity [28], but can 
also modulate neuropeptides involved in food intake. Indeed, 
some studies have shown that polyphenol intake increases 
energy expenditure [29, 30]. Nevertheless, a recent system-
atic review indicates that weight loss by polyphenols is not 
clinically relevant in overweight and obese individuals [31], 
but many interventional studies have a duration of less than 
3 months and it might still be relevant for prevention.

In contrast with the HELENA study, total polyphenol 
intake was inversely associated with MetS and some of its 
components (BMI, WC, blood pressure, and lipid altera-
tions) in Polish adults of the HAPIEE study [8]. Neverthe-
less, these findings were not adjusted for the nutrient com-
position of the diet and a linear association was found only 
for BMI and WC. A higher dietary intake of polyphenols 
decreased systolic and diastolic BP in a high cardiovascu-
lar risk group [32], reduced cardiovascular events and car-
diovascular mortality [33], increased HDL-c and decreased 
LDL-c, triglycerides, systolic and diastolic BP in a popula-
tion with type 2 diabetes [23], and reduced WC, BP, high 
lipoprotein cholesterol, and triglycerides in women, and 
fasting plasma glucose in both gender in Polish older adults 
[8]. All these previous studies are not in adolescents, but in 
an adult population with higher MetS risk and higher poly-
phenol intake.

Metabolic syndrome and intake of polyphenol 
classes

Polyphenol subclasses may have their own specific impact 
on cardiometabolic risk factors, due to their different chem-
ical structures and metabolism [34]. Flavonoids were the 
most consumed polyphenol group in the HELENA study, 
but again not associated with MetS. High flavonoid intake 
was associated with lower BMI, even after adjustment for 
nutrients. In agreement, a cohort study found that a higher 
intake of some of flavonoids was significantly associated 
with lower BMI over 6 years in a middle-aged general 
population [10]. Investigation of the mechanisms of action 
of flavonoids has mainly focused on glucose homeostasis: 
increasing insulin secretion and reducing insulin resistance, 
reducing apoptosis, promoting pancreatic β-cell prolifera-
tion, inflammation and oxidative stress in the muscle; all 
aspects that are also involved in obesity [35, 36]. Indeed, 
another study found that a higher flavonoid intake from 
fruit and vegetables during adolescence was associated with 
lower LDL-c levels [22] and higher HOMA2-%S among 

Table 1  (continued)

Q1 (n = 148) Q2 (n = 173) Q3 (n = 178) Q4 (n = 158) pa

 Vitamin A (mg/day) 1.2 ± 0.53 1.1 ± 0.44 1.1 ± 0.35 1.0 ± 0.38 0.18
 Vitamin D (µg/day) 2.2 ± 0.86 2.1 ± 0.94 2.0 ± 0.75 2.0 ± 0.94 0.29
 Vitamin E (mg/day) 10.1 ± 4 10.4 ± 3.7 10.6 ± 2.9 10.8 ± 3.5 0.45
 Vitamin K (µg/day) 239.4 ± 90.3 248.0 ± 92.3 236.9 ± 73.4 238.0 ± 86.2 0.71

Energy intake (kcal/day) 2331 ± 1046 2403 ± 1135 2197 ± 873 2122 ± 1041 0.08

Data are presented as means ± standard deviation and frequencies. Bold: statistical significance when p < 0.05
Q quartile
a ANOVA-one factor was used for continuous variables and X2 test for categorical variables
b p < 0.05 vs quartile 4, post hoc test for multiple comparisons (Bonferroni test)
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Table 2  Metabolic syndrome 
and its individual components 
according to energy-adjusted 
quartiles of polyphenol intake

Model 1, adjusted for age, sex, European region, education of mother, education of father, puberty status, 
BMI z-score. Model 2 was additionally adjusted for monosaccharides and disaccharides, polysaccharides, 
fibre, monounsaturated fatty acids, saturated fatty acids, cholesterol, protein, vitamin C, and energy intake
Q quartile, BMI body mass index, WC waist circumference, HOMA-IR Homeostasis Model of Assessment 
of insulin resistance, SBP systolic blood pressure, DBP diastolic blood pressure, HDL-c high-density lipo-
protein, LDL-c low-density lipoprotein, TG triglycerides, WHR waist–hip ratio
Data are presented as means ± standard error. Bold values indicate statistical significance when p < 0.05
a Differences between quartiles of polyphenol intake using multiple linear regression, except for MetS, 
which were observed using multiple logistic regression. Values of HOMA-IR and TG were derived by back 
transformation of  loge, and values of HDL-c and LDL-c were obtained by back transformation of square 

Q1 (n = 148) Q2 (n = 173) Q3 (n = 178) Q4 (n = 158) p  valuea

Metabolic  syndromeb

 Model 1 0.58 ± 0.07 0.61 ± 0.07 0.67 ± 0.06 0.66 ± 0.07 0.57
 Model 2 0.62 ± 0.09 0.67 ± 0.08 0.68 ± 0.08 0.64 ± 0.09 0.89

BMI z-score
 Model 1 0.51 ± 0.11c,d,e 0.38 ± 0.11 0.32 ± 0.11 0.37 ± 0.11 0.023
 Model 2 0.37 ± 0.11c,d 0.23 ± 0.10 0.17 ± 0.10 0.08 ± 0.11 0.010

WC (cm)
 Model 1 72.1 ± 0.56 72.0 ± 0.55 72.1 ± 0.55 71.7 ± 0.55 0.27
 Model 2 71.0 ± 0.57 70.6 ± 0.56 70.8 ± 0.56 70.6 ± 0.58 0.67

WC z-score
 Model 1 0.75 ± 0.09 0.74 ± 0.09 0.70 ± 0.09 0.68 ± 0.09 0.31
 Model 2 0.63 ± 0.09 0.58 ± 0.09 0.55 ± 0.09 0.55 ± 0.09 0.46

WHR
 Model 1 0.79 ± 0.004 0.79 ± 0.004 0.79 ± 0.004 0.79 ± 0.004 0.39
 Model 2 0.79 ± 0.01 0.79 ± 0.004 0.79 ± 0.004 0.79 ± 0.01 0.75

HOMA-IR
 Model 1 1.8 ± 1.1 1.9 ± 1.1 1.8 ± 1.1 1.8 ± 1.1 0.84
 Model 2 1.7 ± 1.1 1.8 ± 1.1 1.9 ± 1.1 1.8 ± 1.1 0.50

Glucose (mg/dL)
 Model 1 90.4 ± 0.81 90.9 ± 0.79 90.5 ± 0.79 90.8 ± 0.86 0.83
 Model 2 90.0 ± 0.97 90.4 ± 0.89 90.8 ± 0.89 90.9 ± 1 0.81

SBP (mmHg)
 Model 1 114.7 ± 1.8 115.0 ± 1.8 115.3 ± 1.8 115.0 ± 1.8 0.83
 Model 2 113.3 ± 1.8 113.9 ± 1.7 115.3 ± 1.7 114.8 ± 1.8 0.11

SBP z-score
 Model 1 − 0.28 ± 0.17 − 0.26 ± 0.17 − 0.23 ± 0.17 − 0.26 ± 0.17 0.88
 Model 2 − 0.40 ± 0.17 − 0.35 ± 0.17 − 0.23 ± 0.17 − 0.28 ± 0.17 0.15

DBP (mmHg)
 Model 1 63.7 ± 1 64.4 ± 1 64.0 ± 1 64.8 ± 1 0.18
 Model 2 63.1 ± 1.1 63.7 ± 1.1 64.5 ± 1.1 64.7 ± 1.1 0.07

DBP z-score
 Model 1 0.70 ± 0.11 0.78 ± 0.11 0.74 ± 0.11 0.82 ± 0.11 0.21
 Model 2 0.63 ± 0.12 0.71 ± 0.12 0.79 ± 0.12 0.82 ± 0.13 0.07

HDL-c (mg/dL)
 Model 1 56.7 ± 0.01 55.1 ± 0.01 54.6 ± 0.01 55.0 ± 0.01 0.20
 Model 2 56.4 ± 0.01 55.7 ± 0.01 54.2 ± 0.01 55.4 ± 0.01 0.39

LDL-c (mg/dL)
 Model 1 91.3 ± 0.01 93.0 ± 0.01 93.9 ± 0.01 94.4 ± 0.01 0.69
 Model 2 88.6 ± 0.02 92.3 ± 0.01 93.0 ± 0.01 95.0 ± 0.02 0.38

TG (mg/dL)
 Model 1 62.8 ± 1 61.9 ± 1 59.7 ± 1 60.1 ± 1 0.65
 Model 2 64.1 ± 1.1 61.4 ± 1 59.8 ± 1 59.3 ± 1.1 0.62
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females [37]. Nevertheless, fruit and vegetables only had 
45% contribution to flavonoid intake in the HELENA study. 
Non-linear alteration might indicate U-shaped associations 
in which extremes are not beneficial and thus the need for 
good Dietary Reference Intake (DRI), but the detected non-
linear associations with blood pressure seem not that rel-
evant as the adolescents had normal levels (less than 90th 
percentile or 120 and 80 mmHg) [38].

In contrast, phenolic acid consumption (for which coffee 
was the major contributor) was associated with higher (thus 
less beneficial) LDL-c. Non-significant results have most 
often been reported: no association of coffee consumption 
with LDL-c in a Brazilian study [39], no effect of coffee 
consumption on blood lipids in Colombian healthy adults 
[40] and in Turkish adults [41]. It should be considered that 
our HELENA population are healthy adolescents with low 
LDL-c levels (< 130 mg/dL) [42] and low polyphenol intake. 
Consequently, these data might indicate the beginning of 
the J-shaped curve between coffee consumption and car-
diovascular risk [43], thus missing the steep slope towards 
increased risk. In line with our HELENA study, phenolic 
acid intake was not associated with WC, hypertriglyceri-
demia, low serum HDL-c, hyperglycemia, hypertension, and 
MetS in Tehranian adults [26] or for cardiovascular disease 
in the PREDIMED study [9].

The intake of stilbenes, lignans and other polyphenols 
were not associated with MetS and its components in model 
2. In agreement, the same findings were found in Tehranian 
adults [26] and no effect on bone mineral density or content, 
body composition, lipoproteins, glucose, or inflammation 
after flaxseed lignan complex supplementation [44]. In con-
trast, lignan and stilbenes were found to be inversely associ-
ated with WC in Polish adults [8]. The intake of lignans and 
stilbenes in the HELENA study was below 1 mg/day, and 
the intake of other polyphenols was 21–22 mg/day, which 
were lower than the aforementioned studies.

Metabolic syndrome and individual polyphenols

As different groups of phenolic compounds are digested 
and absorbed through various pathways and to different 
extents [45], certain polyphenols might show significant 
associations with health outcomes and others not. Almost 

all findings disappeared after adjusting for nutrients in model 
2. The inclusion of dietary nutrient composition in the model 
attenuated the association of individual polyphenols and 
BMI, probably due to larger effects of other non-polyphenol 
nutrients.

Only for ferulic acid consumption and WC the association 
was present in model 2, but the highest WC in the study (in 
quartile 3) was still a healthy level (less than 75th percentile 
reference [46]), thus without clinical relevance. A mecha-
nistic animal study suggests that ferulic acid intake could 
reduce obesity via modulation of enzymatic (amylase and 
lipase) activities, hormonal (insulin, ghrelin, and leptin) and 
inflammatory responses [47].

Without adjustment for nutrients, proanthocyanidins 
(the most frequent polyphenol subclass in our population) 
were associated with lower BMI z-score; (−)-Epicatechin 
intake with HOMA-IR in a quadratic way and with lower 
BMI z-score; and (+)-Catechin intake with lower BMI and 
WC. For these three polyphenols previous experimental 
research has suggested such biologic activity. Proanthocya-
nidins might increase energy expenditure, suppression of 
food intake and inhibiting digestive enzymes like lipase and 
amylase resulting in lower fat and glucose absorption from 
the gut [48]. Epicatechin might prevent the adipose tissue 
inflammation and insulin resistance, at least by marked sup-
pression of CCL-19 expression [49] and to mitigate obesity-
associated insulin resistance [50]. Catechin might reduce 
weight by modifying gut microbiota and gene expression 
in colonic epithelial cells, thus changing fat digestion, fat 
absorption, and lipolysis in adipocytes [51].

Food sources

Regional and age differences in food consumption can influ-
ence the intake of specific polyphenols and thus also the 
observed effect on MetS. Interestingly, chocolate products 
were the major contributors of polyphenols in our adolescent 
population, followed by fruit (juices). Chocolate products are 
often no major contributor in other (mainly adult population) 
studies [9, 23]. Epidemiological studies have suggested that 
cocoa polyphenol intake may lower cardiovascular risk [52], 
although this might be patient-dependent [53] e.g., only in the 
elderly [54]. Health benefits of total flavanols and epicatechin 

root
b Metabolic syndrome (MetS) based on the AHA definition and predicted probability to have at least one 
MetS risk factor based on logistic regression
c p < 0.05 vs quartiles 4, post hoc test for multiple comparisons (Bonferroni test) if total p value was signifi-
cant
d p < 0.05 vs quartiles 3, post hoc test for multiple comparisons (Bonferroni test) if total p value was signifi-
cant
e p < 0.05 vs quartiles 2, post hoc test for multiple comparisons (Bonferroni test) if total p value was signifi-
cant

Table 2  (continued)
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are often only seen at rather high doses [53], much higher than 
the mean intake of flavanols (148.33 mg/day) and epicatechin 
(7.13 mg/day) in the HELENA study, but higher chocolate 
consumption was associated with lower BMI, WC, and body 
fat in the HELENA study [55].

Strengths and limitations

To the best of our knowledge, this is the first study investi-
gating detailed associations of polyphenols with MetS in 
adolescents. As the adolescents had lower polyphenol intake 
and better metabolic health than adults, testing agreement 
with adult studies is relevant. Also the observed differential 
effects depending on polyphenol class and MetS component 
confirmed the importance of studying these details. Secondly, 
this study has a large and heterogeneous population sample, 
which gives an approximation of the average situation in 
European cities [12]. Thirdly, high quality data collection has 
been strived for via the standardised collection of data, the 
centralised measurements of biochemical variables and the 
consideration of relevant confounders. Fourthly, the most com-
prehensive polyphenol database (Phenol-Explorer) was used.

Nevertheless, our study has limitations. An important 
limitation was that the prevalence of metabolic syndrome 
was very low in healthy adolescents and, therefore, sta-
tistical power was reduced. Given the low magnitude of 
detected associations, further corroboration in larger stud-
ies is required. Additionally, the cross-sectional design 
does not allow causal relations and the analyses are rather 
exploratory without adjustment for multiple testing (by next 
to main hypothesis also testing separate metabolic syndrome 
factors, separate polyphenol classes and non-linear trends). 
Other limitations are linked to the estimation of polyphenol 
intake due to the missing dietary data of Friday and Satur-
day, some missing details in the 24-h recalls like herbs and 
specific oil types, food items for which composition was not 
available in the Phenol-Explorer database, and some indi-
vidual polyphenols within the same subclass which could 
have opposing effects. Consequently, the measurement of 
polyphenol biomarkers like in biofluids could have added 
value in examining health effects [56], especially since a lot 
of metabolization happens before reaching the bio-active 
substances. Using the same methodology as in our study, 
i.e., 24-h recalls and the phenol-explorer database, reported 
polyphenol intake was significantly associated with polyphe-
nol biomarkers in urine [57].

Conclusion

In conclusion, a dietary pattern high in total polyphenols 
and flavonoids may help to prevent overweight as it was con-
sistently related to BMI independent of socio-demographic 

status or other nutrient parameters and showed a small but 
clinically relevant effect size (BMI z-score 0.4 vs 0.1 in low-
est and highest polyphenol intake quartile). Nevertheless, no 
consistent associations with other MetS parameters could 
be found: there were only a few additional non-linear asso-
ciations with certain polyphenols or findings became non-
significant after statistical adjustment for nutrients. These 
findings suggest the importance of investigating specific 
mechanisms of individual polyphenols and determining 
which dose of specific polyphenols should be consumed for 
maximal benefit. Future studies using longitudinal data and 
using polyphenol biomarkers are needed to determine health 
effects in more detail.
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