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ABSTRACT

The food metabolome is defined as the part of the human metabo-
lome directly derived from the digestion and biotransformation of
foods and their constituents. With >25,000 compounds known in
various foods, the food metabolome is extremely complex, with a
composition varying widely according to the diet. By its very nature
it represents a considerable and still largely unexploited source of
novel dietary biomarkers that could be used to measure dietary ex-
posures with a high level of detail and precision. Most dietary bio-
markers currently have been identified on the basis of our knowledge
of food compositions by using hypothesis-driven approaches. However,
the rapid development of metabolomics resulting from the develop-
ment of highly sensitive modern analytic instruments, the availabil-
ity of metabolite databases, and progress in (bio)informatics has
made agnostic approaches more attractive as shown by the recent
identification of novel biomarkers of intakes for fruit, vegetables,
beverages, meats, or complex diets. Moreover, examples also show
how the scrutiny of the food metabolome can lead to the discovery
of bioactive molecules and dietary factors associated with diseases.
However, researchers still face hurdles, which slow progress and need
to be resolved to bring this emerging field of research to maturity.
These limits were discussed during the First International Workshop
on the Food Metabolome held in Glasgow. Key recommendations
made during the workshop included more coordination of efforts;
development of new databases, software tools, and chemical libraries
for the food metabolome; and shared repositories of metabolomic data.
Once achieved, major progress can be expected toward a better un-
derstanding of the complex interactions between diet and human
health. Am J Clin Nutr 2014;99:1286-308.

INTRODUCTION

The 2 major achievements of nutrition research in the 20th
century were the discovery of essential nutrients and the eluci-
dation of their role in key physiologic functions. Recommen-
dations were defined to provide adequate intakes of these
nutrients that led to reduction in risks of deficiency diseases, at
least in high-income Western societies. The past 2 decades have
seen a shift in nutrition research away from the prevention of
deficiency diseases toward the prevention of chronic diseases and
the elucidation of the role of nonessential food constituents on
such diseases (1). This constitutes a considerable challenge for
nutrition research in the 21st century, in particular because of the
extreme variety of these bioactive constituents and the large
diversity of biochemical targets and signaling and metabolic
pathways they may interact with.
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Although classical hypothesis-driven approaches have been
very successful in discovering essential nutrients, they are ill
adapted to aid our understanding of the role of highly diverse
nonessential compounds in foods. Data-driven approaches and
“omics” technologies offer opportunities to explore the complex
interactions between diet and the human organism. In particular,
the measurement of hundreds or thousands of metabolites in
metabolomic experiments now allows the characterization of in-
dividual phenotypes with a level of precision never before achieved
(2). Individuals or populations exposed to different environments,
lifestyles, or diets can be distinguished and characteristic metabolic
differences identified (3).

A growing number of metabolomic studies have been pub-
lished over the past 5 y in the field of nutrition (3-6). Metab-
olomics was used to show the alteration of metabolic profiles on
the consumption of specific nutrients, foods, or diets in small-
scale intervention studies. Two different fractions of the human
metabolome are influenced by the diet: the endogenous metab-
olome and the food metabolome (Figure 1). The endogenous
metabolome includes all metabolites from the host. Its variations
show novel metabolic effects of the diet that may affect human
health. The “food metabolome” has been defined as the sum of

"Fromthe International Agency for Research on Cancer, Lyon, France
(AS); University College Dublin, Dublin, Ireland (LB); the Institut National
de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont
University, Clermont-Ferrand, France (CM); the University of Barcelona,
Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg,
Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom
(JD); the University of California, Berkeley, CA (SMR); the University of
Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta,
Edmonton, Canada (DSW).

2 Supported by the European Union (NutriTech FP7-KBBE-2011-5 grant
289511, EUROCAN FP7-KBBE-2010.2.4.1-2 grant 260791); the Danish
Ministry of Science, Technology, and Innovation (for the UNIK Food, Fit-
ness and Pharma Project); the French National Agency for Research (Phe-
noMeNEp ANR-10-ALIA-007); the Medical Research Council (MR/
J010308/1); and the Spanish Ministerio de Economia y Competitividad
(MINECO; project AGL2009-13906-C02-01) and by a Senior Visiting Sci-
entist Award (to SMR) granted by the International Agency for Research on
Cancer.

3 Address correspondence to A Scalbert, International Agency for Re-
search on Cancer (IARC), Nutrition and Metabolism Section, Biomarkers
Group, 150 Cours Albert Thomas, F-69372 Lyon Cedex 08, France. E-mail:
scalberta@iarc.fr.

Received September 19, 2013. Accepted for publication March 24, 2014.

First published online April 23, 2014; doi: 10.3945/ajcn.113.076133.

Am J Clin Nutr 2014;99:1286-308. Printed in USA. © 2014 American Society for Nutrition

Supplemental Material can be found at:
http://ajcn.nutrition.org/content/suppl/2014/05/13/ajcn.113.0
76133.DCSupplemental.html

¥TOZ ‘€T 1SNBNY U (T9Z9TO0-ND) USIM IUNPSIA J3P HaLolqig e B10°uonLnu’udfe woiy papeojumoq


http://ajcn.nutrition.org/
http://ajcn.nutrition.org/content/suppl/2014/05/13/ajcn.113.076133.DCSupplemental.html 
http://ajcn.nutrition.org/content/suppl/2014/05/13/ajcn.113.076133.DCSupplemental.html 

@ The American Journal of Clinical Nutrition

THE FOOD METABOLOME: A WINDOW OVER DIETARY EXPOSURE

all metabolites directly derived from the digestion of foods, their
absorption in the gut, and biotransformation by the host tissues
and the microbiota as first proposed by one of the authors of this
review in 2008 (7). Other authors have also proposed to define
the “food metabolome” as the whole set of food constituents in
any foods (5, 8). A definition of the metabolome centered on
biological species is preferred here. Humans consume as many
metabolomes as there are biological species making up our
foods—for example, the tomato or beef metabolomes. There-
fore, the human metabolome contains fractions of these me-
tabolomes, partly transformed after ingestion, which constitute
the human food metabolome.

The various foods consumed by humans contain >25,000
compounds, most of them being further metabolized in the human
body (9). The food metabolome is therefore highly complex and
also highly variable. This variability constitutes a unique and
extremely rich source of information on the human diet that has
barely been exploited. Detailed characterization of the food
metabolome should permit accurate monitoring of dietary ex-
posure and identification of foods that influence disease risks in
clinical and epidemiologic studies. This review describes the cur-
rent knowledge on the food metabolome and discusses oppor-
tunities for nutrition research. It also makes recommendations to
move the field forward as discussed by the participants in the
First International Workshop on the Food Metabolome (4-5
June 2013, Glasgow, United Kingdom), which convened with 50
experts from Europe and North America (Supplemental Table 1
under “Supplemental data” in the online issue).

DIETARY BIOMARKERS IN THE PRE-OMICS ERA

Studies of connections between the diet or specific dietary
factors and health status require accurate measurements of di-
etary exposures. Such measurements can be used to evaluate
compliance in dietary intervention studies, to find associations
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with disease outcomes, or to monitor dietary changes in pop-
ulations. Dietary exposure has traditionally been measured with
self-reported methods, namely dietary recalls or food-frequency
questionnaires (10). However, a number of random and sys-
tematic errors are inherent in such methods, including recall
bias and difficulty in assessing portion sizes (11). The resulting
misclassification of subjects, especially when sorting them
according to dietary intake, can influence observed associations
between dietary exposures and disease outcomes and underlies
inconsistencies in published findings in the field of nutritional
epidemiology (12).

To address these shortcomings, intense efforts have been di-
rected toward statistical techniques to correct measurement errors
as well as toward developing new dietary assessment instruments.
The application of dietary biomarkers as more objective mea-
sures of dietary exposure in nutritional epidemiology has been
particularly significant (13). These biomarkers have been used as
measures of nutritional status and of exposure to bioactive
molecules in foods, as surrogate indicators of food intake, and to
validate measures of dietary intake (14). Biomarkers are also
useful when little or no data exist on food composition, as is often
the case for bioactive molecules such as glucosinolates or food
contaminants such as aflatoxins (15, 16).

Dietary biomarkers measured in population studies

A variety of dietary biomarkers identified through the analysis
of correlations with dietary intake have been measured in epi-
demiologic studies. Information on these biomarkers has been
systematically collected in the novel Exposome-Explorer data-
base (V Neveu, DS Wishart, and A Scalbert, unpublished data,
2014); ~100 biomarkers could be identified (Supplemental
Table 2 under “Supplemental data” in the online issue). These
biomarkers have been measured in plasma or serum (caroten-
oids, fatty acids, vitamins, polyphenols, food contaminants, and
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enzymes), red blood cells (fatty acids, carotenoids, and hemo-
globin adducts), and to a lesser extent in urine (polyphenols,
vitamins, inorganic compounds, and amino acids). Some of
these biomarkers correspond to nutrients and bioactive compounds
and have been used to compare status or exposure. Some have been
used as surrogate biomarkers of food intake, as follows: poly-
phenols, carotenoids, and vitamin C for fruit and vegetables (17,
18); alkylresorcinols for whole-grain cereals (19, 20); isoflavones
for soy (21); amino acids and fatty acids for meat (22, 23); fatty
acids for dairy products and fish (22, 24); and polyphenols for tea
and wine (18, 25) (Table 1). Dietary biomarkers not only include
natural food constituents but also certain food additives such as
iodine in milk (26) or food contaminants such as polychlorinated
biphenyls in fatty fish (27). These latter biomarkers are often
specific to certain populations who consume these additives or
where consistent levels of contamination are observed.

Other biomarkers are directly derived from the digestion and gut
absorption of food constituents or are endogenous metabolites that
have been altered by exposure to specific nutrients. For instance,
serotonin metabolism is altered by acute alcohol intake (28), the
activity of selenium-containing enzymes such as erythrocyte
glutathione peroxidase depends on selenium intake, and ceramide
synthase is inhibited by exposure to the mycotoxin fumonisins (29).

Pharmacokinetics and reliability of dietary biomarkers

Dietary biomarkers are not without their limitations. They may
be altered because of possible interactions with genetic factors,
physiologic or health status (ie, age or obesity) (30), dietary
factors such as fats for lipophilic biomarkers (31), and lifestyle
factors such as alcohol intake or smoking (32). Their concen-
trations also vary over time according to their pharmacokinetic
properties. A higher intraindividual variability is expected for
biomarkers with a short half-life (20, 33). Intraindividual vari-
ability leads to exposure measurement errors when the objective
is to characterize habitual exposure in epidemiologic studies and
small numbers of measurements are available across subjects.

Some of the biomarkers listed in Table 1 have half-lives that do
not exceed 24 h [polyphenols, alkylresorcinols, and amino acids
(34, 35)]. These biomarkers may thus be useful only in pop-
ulations who regularly and frequently consume these dietary
sources. Lipophilic markers (carotenoids, lipids) (36) or bio-
markers associated with erythrocytes (folate, fatty acids) (29)
have longer half-lives (week to month) because of the equilibrium
of biomarkers between blood and fatty tissues, or because of their
integration into erythrocytes. Some dietary compounds such as
isothiocyanates and acrylamide also form adducts with blood
albumin and hemoglobin (37, 38), with half-lives varying be-
tween 3 and 8 wk, and may be used as longer-term biomarkers.
Protein adducts with dietary compounds have received limited
attention thus far. Adductomics appears to be particularly
promising for the discovery of these adduct biomarkers (39, 40).

Biomarker sensitivity and specificity

Dietary biomarkers should have sufficient sensitivity to measure
exposures within ranges commonly found in the populations of
interest. Intervention studies are essential to address this question
and to evaluate the relation between exposure and biomarker
concentrations (17, 41). Biomarkers such as vitamin C or selenium
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in erythrocyte glutathione peroxidase show saturable effects and
may not be suitable for use at high levels of exposure (29, 42).
Conversely, some biomarkers are present at concentrations too low
to be reliably detected at low levels of exposure. For example,
some biomarkers of alcohol abuse were not appropriate to evaluate
low to moderate levels of alcohol consumption (43).

Specificity is another essential characteristic of biomarkers.
Some biomarkers can be highly specific for a particular food (Table
1). Proline betaine and lycopene are well-established biomarkers
for citrus fruit and tomato products, respectively (44, 45). Other
biomarkers may be common to several foods or characteristic of an
entire food group. Vitamin C and a number of carotenoids and
flavonoids are common to many fruit and vegetables. Vitamin C or
the sum of carotenoids or flavonoids have been used as generic
biomarkers for fruit and vegetable intake (18, 45).

Single biomarker or combinations of biomarkers

Traditionally, single biomarkers have been used to characterize
complex dietary exposures such as consumption of a whole food
group or intake of a group of compounds with related biological
activities. Two examples show the limits of such global assays.
Vitamin C used as a biomarker for fruit and vegetable intake is
present in a large number of fruit and vegetables, but its content
varies widely according to species, varieties, and food-processing
methods. It is also widely used as an additive and dietary sup-
plement. The Folin assay, commonly used to estimate total
polyphenols in foods (46), has also been applied to urine samples
to compare polyphenol intake (47), but such use may be in-
appropriate because of the presence of interfering reducing
metabolites in such complex biological matrices (46).

In contrast to these global assays, analytic approaches based on
the estimation of combinations of dietary constituents may pro-
vide more accurate measurements of dietary exposure. The ratios
of 2 alkylresorcinols characteristic of whole-grain wheat or rye
were found to be good indicators of the relative consumption of
these cereals (20, 48). However, there are very few such examples
in which combinations of biomarkers were used to improve the
specificity of dietary exposure measurements. Metabolomics
constitutes a comprehensive approach to identify new panels of
biomarkers that are specific or common to particular foods or food
groups, as shown recently for citrus fruit (49). This should greatly
improve the assessment of exposure to classes of food bioactive
compounds, food groups, or dietary patterns.

THE FOOD METABOLOME IN THE OMICS ERA

Metabolomics can be described as the application of high-
throughput analytic chemistry technologies [liquid chromatography—
mass spectrometry (LC-MS)*, nuclear magnetic resonance

4 Abbreviations used: dbNP, Nutritional Phenotype Database; ECMDB,
E. coli Metabolome Database; FDR, false discovery rate; FooDB, Food Com-
ponent Database; GC-MS, gas chromatography—mass spectrometry; HMDB,
Human Metabolome Database; LC-MS, liquid chromatography—mass spec-
trometry; MS, mass spectrometry; MSI, Metabolomics Standards Initiative;
MWAS, metabolome-wide association study; NMR, nuclear magnetic reso-
nance spectroscopy; PCA, principal components analysis; PLS-DA, partial
least-squares discriminant analysis; TMAO, trimethylamine oxide-N-oxide;
YMDB, Yeast Metabolome Database.
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Biomarkers used as surrogate indicators of consumption of foods and food groups for which significant (+ > 0.3) correlations have been reported’
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Food category and food

Biomarkers

Fruit
Apple
Orange
Grapefruit
Citrus fruit
Fruit (total)

Vegetables
Carrot
Tomato
Vegetables, leafy
Vegetables, root
Vegetables (total)

Fruit and vegetables (total)

Cereal products
Whole-grain rye
Whole-grain wheat
Whole-grain cereals (total)

Seeds

Soy products
Meats

Meat

Meat, beef
Animal products (total)
Dairy products

Milk, dairy products
Fish

Fatty

Lean
Beverages (nonalcoholic)
Tea
Coffee
Beverages (alcoholic)
Wine
Beverages (alcoholic) (total)

Kaempferol, isorhamnetin, m-coumaric acid, phloretin

Caffeic acid, hesperetin, proline betaine

Naringenin

Ascorbic acid, B-cryptoxanthin, hesperetin, naringenin, proline betaine, vitamin A, zeaxanthin

4-0-Methylgallic acid, B-cryptoxanthin, carotenoids (mix), flavonoids (mix), gallic acid, hesperetin, isorhamnetin,
kaempferol, lutein, lycopene, naringenin, phloretin, vitamin A, vitamin C, zeaxanthin

a-Carotene

Carotenoids (mix), lycopene, lutein

Ascorbic acid, B-carotene, carotenoids (mix)

Ascorbic acid, a-carotene, 3-carotene

Ascorbic acid, a-carotene, B-carotene, B-cryptoxanthin, carotenoids (mix), enterolactone, lutein, lycopene

a-Carotene, apigenin, ascorbic acid, B-carotene, 3-cryptoxanthin, carotenoids (mix), eriodictyol, flavonoids (mix),
hesperetin, hippuric acid, lutein, lycopene, naringenin, phloretin, phytoene, zeaxanthin

5-Heptadecylresorcinol, 5-pentacosylresorcinol, 5-tricosylresorcinol
5-Heneicosylresorcinol, 5-tricosylresorcinol, alkylresorcinols (mix)

5-Heneicosylresorcinol, 3,5-dihydroxybenzoic acid, 3-(3,5-dihydroxyphenyl)-1-propanoic acid, 5-pentacosylresorcinol,

5-tricosylresorcinol, alkylresorcinols (mix)
Daidzein, genistein, isoflavones (mix), O-desmethylangolensin

1-Hydroxypyrene glucuronide, 1-methylhistidine
Pentadecylic acid
1-Methylhistidine, 3-methylhistidine, margaric acid, pentadecylic acid, phytanic acid

Iodine, margaric acid, pentadecylic acid, phytanic acid

DHA, EPA, long-chain w-3 PUFAs, polychlorinated biphenyl toxic equivalents, pentachlorodibenzofuran,
polychlorinated biphenyl 126, polychlorinated biphenyl 153, w-3 PUFAs
Long-chain w-3 PUFAs

4-0-Methylgallic acid, gallic acid, kaempferol
Chlorogenic acid

4-0-Methylgallic acid, caffeic acid, gallic acid, resveratrol metabolites
5-Hydroxytryptophol/5-hydroxyindole-3-acetic acid, carbohydrate-deficient transferrin, ethyl glucuronide,
y-glutamyltransferase, aspartate aminotransferase, alanine aminotransferase

' Data were extracted from the Exposome-Explorer database (V Neveu, DS Wishart, and A Scalbert, unpublished data, 2014).

spectroscopy (NMR), gas chromatography—mass spectrometry
(GC-MS)] directed at characterizing the metabolome (ie, the
small molecules associated with metabolism). Its development
follows that of genomics, transcriptomics, and proteomics. Al-
though not as rapid in development or as high-throughput as its
omics cousins, metabolomics led a sea change in how small
molecules could and should be analyzed. Rather than being
limited to measuring only one or a few compounds at a time,
new metabolomic technologies allowed researchers to measure
hundreds or even thousands of metabolites at a time. This newly
found capacity to measure so many chemicals at once led to
a number of metabolomic projects, all launched in the mid-
2000s, aimed at identifying the metabolomes of microbes (50),
plants (51), and humans (52-54). These projects typically used
LC-MS, GC-MS, NMR, or a combination of all 3 techniques
to identify and/or quantify as many metabolites as possible in
cells, tissues, and biofluids of the organisms of interest. These
comprehensive metabolomic studies were also complemented
by a number of much more specific metabolomic studies aimed

at characterizing the metabolic responses of humans to the in-
take of various foods or food constituents such as soy (55), citrus
fruit (44), nuts (56), meats (57), and tea (58).

The food metabolome as part of the human metabolome

It was through these early metabolome studies that scientists
realized that the human metabolome was not as small or as simple
as first imagined. In particular, noticeable differences in human
metabolomes could be detected that appeared to depend strongly
on diet, sex, health status, genetics, kinetics, physiology, and
age—with diet being most important (59-62). This dietary de-
pendence was not unexpected, but it was not anticipated to be so
complicated. Unlike laboratory animals, humans are free-living
omnivores who, in fact, eat other metabolomes. Furthermore,
humans are exposed to a huge variety of “chemical environ-
ments” associated with the various foods we consume. Thus, the
human metabolome is not just a single entity but consists of
several components (Figure 1), including the following: /) the
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endogenous metabolome (consisting of chemicals needed for, or
excreted from, cellular metabolism), 2) the food metabolome
(consisting of essential and nonessential chemicals derived from
foods after digestion and subsequent metabolism by the tissues
and the microbiota), 3) other xenobiotics derived from drugs,
and 4) xenobiotics derived from environmental or workplace
chemicals.

The exact size and composition of these different human
metabolomes are difficult to ascertain. Minimally, the human
metabolome contains 50,000 different detectable compounds (9,
63), but as instrument sensitivity and separation technologies
improve, this number is expected to increase. Up to 200,000
different metabolites are estimated to occur in the plant kingdom,
and combinations of several hundreds of secondary metabolites
generally characterize each edible plant (6, 64, 65). Furthermore,
the composition often depends on the body compartment, tissue,
or biofluid to which one refers. For instance, many food or drug
constituents that might be found in the mouth or stomach are
chemically identical to the compounds isolated from the intact
food or drug. On the other hand, food constituents found in blood,
urine, or other excreta are often metabolically transformed in the
liver, kidney, or intestine to metabolites that are very different
from the parent compound. This adds greatly to the diversity of
the food metabolome. However, in some cases, the parent
compounds are broken down to such an extent that their end
products are actually identical to chemicals that the body pro-
duces naturally. The importance of the gut microbiota in con-
tributing metabolites to the human metabolome has also recently
emerged (50, 66). Some microbial metabolites, typically vitamins,
certain essential amino acids, and a few fatty acids, are specific
microbial metabolites (~ 100 compounds in total are known at
this time). However, a large majority of the metabolites produced
by the gut microbiota are derived from the biotransformation of
both the endogenous metabolome and the food metabolome and
are therefore an integral part of these 2 metabolomes. These
microbial metabolites include short-chain fatty acids, secondary
bile acids, protein and amino acid metabolites, as well as plant
polyphenol metabolites (67).

Metabolism of food constituents

Knowledge of the metabolism of food constituents is critical to
understanding the origin of the biotransformed fraction of the
food metabolome. It is also essential if we wish to use food
metabolites as nutritional biomarkers or as a means to monitor
food consumption. In this regard, it is useful to review how food
chemicals can be metabolized. Food constituents can be me-
tabolized in 3 different ways: I) they can be digested in the
mouth, stomach, and small intestine into simple nutrients that
can be absorbed through the gut barrier; 2) they can be further
transformed by host tissues, especially the liver and kidney;
or 3) they can be processed by the gut microbiota in the large
intestine.

The first category of food constituents are intermediary me-
tabolites formed by digestion of lipids, polysaccharides, and
proteins. Most of these compounds are common to all living
organisms and identical to human endogenous metabolites. They
cannot generally be used as dietary biomarkers because of their
common identity and the impossibility to trace their dietary
origin. The possible exceptions are the essential amino acids,
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essential fatty acids along with most vitamins, and minerals,
which cannot be produced by humans and must originate from
external dietary sources.

The second way that food constituents can be metabolized is
through transformation by host tissues. Food compounds that are
not useful for basic metabolism or that do not correspond to fa-
miliar endogenous metabolites are treated as “foreign” or as
xenobiotics. Examples of exogenous food constituents include
polyphenols, alkaloids, carotenoids, chlorophylls, artificial colors,
artificial flavors, natural volatiles for flavoring/aroma, and Mail-
lard reaction products formed during cooking. The human body
maintains a complex defense system consisting of dozens of en-
zymes and membrane transporters to recognize these foreign and
potentially toxic chemicals and to neutralize them by rapid bio-
transformation and/or elimination. Classically, the biotrans-
formation process consists of 2 types of chemical reactions,
phase I and phase II transformations, both of which occur
primarily in the liver, kidney, and intestine. Phase I trans-
formations typically involve oxidation of compounds via
cytochrome P450 enzymes as well as hydrolysis by various
dehydrogenases, esterases, and amidases. On the other hand,
phase II transformations consist of chemical modifications
such as methylation (by methyltransferases), sulfation (by
sulfotransferases), acetylation (by N-acetyltransferases), glu-
curonidation (by UDP-glucuronyltransferases), and amino acid
conjugation (by glutathione or glycyl transferases). A recent
meta-analysis (68) of the metabolic fate of >1000 xenobiotics
showed that cytochrome P450 catalyzed oxidations (40%) and
UDP-glucuronosyltransferase glucuronidations (14%) were the
most common followed by reactions involving dehydrogenases
(8%), hydrolases (7%), glutathione-S-transferases (6%), and sul-
fatases (5%). In fact, there are >300 different empirical rules that
allow one to predict the fate of metabolites on the basis of their
chemical structure (69). Many of the metabolites derived from the
biotransformation of food components have not been well char-
acterized. For polyphenols, >230 phase I/Il metabolites have
been identified and associated with the consumption of specific
polyphenol-containing foods (70). The yield of phase I/II reactions
are often very high (68, 71), and host-transformed metabolites re-
tain many of the features of their parent compounds. Consequently,
these exogenously derived metabolites can be quite useful as specific
food biomarkers.

The third way that food metabolites may be transformed is
through microbial metabolism. Microbes have a very different set
of enzymes from mammals, and given that there are >1000
different species of microbes in the human gut (72) there is an
enormous diversity of enzymatic processes that act on food-
derived compounds. The gut microbiota is particularly adept at
processing polyphenols to phenolic breakdown products. For
instance, depending on the predominant microbiota, polyphe-
nols can be transformed by ring cleavage to a variety of aromatic
compounds such as benzoate and various derivatives of hy-
droxyphenylacetic and hydroxypropionic acids. These phenolic
acids can be further conjugated to glycine as in hippurate. The
gut microbiota also processes indigestible carbohydrates
through a variety of fermentative pathways yielding short-chain
fatty acids such as butyric acid and propionic acid. Certain
microbial metabolites can be useful as food biomarkers, al-
though there is a complex relation between the food source, the
predominant gut microbial species, and the resulting food
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metabolites (73). Consequently, weaker correlations with in-
takes of foods or of their constituents were observed for mi-
crobial metabolites when compared with untransformed food
compounds and host-transformed metabolites (41). This is most
probably a result of the large variability of the microbiota across
subjects (74). As a result, microbial metabolites should be
treated with some caution when used as food biomarkers.

Food metabolome and metabolite databases

Given the complexity of food constituents, the diversity of
known food metabolites, and the rapidly growing number of
studies on the food metabolome, it is becoming clear that well-
curated databases are of utmost importance to keep track of this
information. These “omics era” databases are being developed to
help researchers understand the origins and fate of many food
metabolites (Table 2). Some recent examples include the
Human Metabolome Database (HMDB) (9), the E. coli
Metabolome Database (ECMDB) (66), the Yeast Metabolome
Database (YMDB) (75), Food Component Database (FooDB)
(76), Phenol-Explorer (70), and PhytoHub (77). HMDB is an
online database of all known and presumptive human metabo-
lites. This rapidly growing database currently contains >40,000
metabolites including endogenous, microbial, biotransformed,
and exogenous/xenobiotic compounds. ECMDB is another
online database consisting of 2750 metabolites known to be
produced by Escherichia coli. This resource provides a
representative estimate of the microbial metabolome that
exists within the human gut. YMDB is a database consisting of
1730 metabolites known to be produced by Saccharomyces
cerevisae. Given the number of food products (wine, beer,
bread) produced by yeast fermentation and given that yeast also
lives in the human gut, this database can also provide some
useful data with regard to food metabolites and their possible
origins and fate. FooDB is a database of >28,000 food con-
stituents, including artificial food additives. Much of the
chemical data in FooDB is now in HMDB, but FooDB provides
additional information about food sources and food concentra-
tions that is not in the HMDB. PhytoHub is an online database
dedicated to the phytochemicals present in plant foods (~ 1000
compounds), their known human metabolites reported in the
literature, and other potential metabolites predicted with in silico
expert systems. Phenol-Explorer is an online database providing
detailed information on dietary polyphenols and polyphenol
metabolites. These food-focused resources are particularly de-
tailed and provide substantially more in-depth information and
reference material than what is available in the HMDB, YMDB,
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and ECMDB resources. Entries in each of these databases
mentioned here are linked to other online resources such as
PubMed, PubChem, Kyoto Encyclopedia of Genes and Ge-
nomes, Chemical Entities of Biological Interest, ChemSpider,
and other widely used chemical resources. The establishment of
these database resources along with the increasingly widespread
use of metabolomics in nutrient analysis has now moved the
field of food and nutrition science firmly into the modern
“omics” era.

METABOLOMICS AND DISCOVERY OF NOVEL
DIETARY BIOMARKERS

Study design

As noted previously, metabolomics has emerged as a key tool
in the search for novel biomarkers of dietary intake. To date, the
methods used for biomarker discovery can be divided into 2 main
categories: hypothesis-driven and data-driven. In both cases,
metabolomics-based approaches can be applied. In the hypothesis-
driven approach, prior knowledge about the biomarker or a series
of biomarker candidates is available from food composition
databases such as FooDB (78) and methods are developed to
measure the candidate biomarkers. So far, this approach has
essentially been applied to specific families of food constituents
such as fatty acids or carotenoids (45, 79).

In the data-driven approach, there is no prior knowledge of the
biomarker and a large number of metabolites are measured, with
the main limitation being the capacity of the analytic instrument
to detect them. This approach has been used to discover novel
biomarkers for a number of foods, nutrients, or diets (Table 3).
The samples to be analyzed can be obtained from /) controlled
dietary interventions or 2) cross-sectional studies.

In controlled dietary interventions, subjects consume the food
items of interest in a single meal (acute study) or in repeated
meals over a given period of time (ranging from a few days to up
to 6 mo; short- to medium-term study). In acute studies, biofluids
are collected postprandially over a time period of up to 24 h after
consumption of the food of interest. Ideally, any biomarker
identified in these acute studies must be validated with an in-
tervention study to ensure there is a dose response, which would
render the biomarker suitable for use over a range of intakes. In
short-term interventions, biofluids are collected at the end of the
intervention period and compared in subjects consuming either
the test food or a control food. Biofluids can also be collected
before and after consumption of the test food. A limitation of
these intervention studies is the fact that the biomarkers identified

TABLE 2
Metabolite databases related to the food metabolome and accessible online’
No. of

Database Metabolites metabolites Website address Reference
HMDB Endogenous, microbial, biotransformed, and exogenous/ >40,000 www.hmdb.ca O

xenobiotic compounds identified in humans
ECMDB Escherichia coli metabolites 2750 www.ecmdb.ca (66)
YMDB Saccharomyces cerevisiae metabolites 1730 www.ymdb.ca (75)
FooDB Food constituents and food additives 28,000 www.foodb.ca (76)
Phenol-Explorer Dietary polyphenols and their metabolites 502 www.phenol-explorer.eu (70)
PhytoHub Dietary phytochemicals and their metabolites 1500 www.phytohub.eu 77)

! ECMDRB, E. coli Metabolome Database; FooDB, Food Component Database; HMDB, Human Metabolome Database; YMDB, Yeast Metabolome Database.
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may not be sufficiently specific for the test food in population
studies, because regular diets may include other foods containing
precursors of the same biomarkers. For instance, in a cross-
sectional analysis of a whole-diet intervention study it was only
possible to verify 23% of potential biomarkers observed in
previous-meal studies (81).

Cross-sectional studies can therefore play an important role in
biomarker discovery. Low and high consumers are selected from
food intake data collected by using food-frequency questionnaires,
food diaries, or other dietary assessment tools. Comparison of
these groups can lead to the identification of biomarkers that are
reflective of habitual intake, provided that these biomarkers have
a sufficient half-life in the organism or that the foods are regularly
consumed. Although these and other studies have shown the
potential of cross-sectional studies, care needs to be taken because
many of the foods consumed are highly correlated and there is
a risk of identifying biomarkers that are not specific to the par-
ticular food of interest unless their identity and specific occurrence
in the considered foods are established. Notwithstanding, cross-
sectional studies are excellent resources that are currently un-
derused for dietary biomarker discovery.

Novel dietary biomarkers identified through
a metabolomic approach

An extensive list of potential dietary biomarkers discovered by
metabolomics is presented in Table 3. Markers associated with
the consumption of foods, nutrients, or diets have been identified.
Successful studies include the identification of proline betaine as
a marker of citrus intake (49, 80). This marker was first identified
in small-scale acute feeding studies and validated in free-living
subjects in 2 independent studies (44, 80). It was confirmed in
a cross-sectional study that used untargeted metabolomics (49)
and played an important role in discriminating noncompliant
individuals in a dietary pattern study of Nordic compared with
habitual diets (106). In these same studies, screening of urinary
profiles for predicted metabolites of citrus fruit also led to the
identification of some terpenoids and flavonoids as biomarkers of
citrus food intake as well as of intake of citrus-flavored sweets.
This shows well the importance of previous knowledge on food
composition and on metabolism of food constituents for anno-
tating unknown discriminating ions in untargeted metabolomic
studies.

Trimethylamine oxide-N-oxide (TMAO) was found to be
a putative biomarker for meat intake or for meat-containing diets
in several studies (102—104), but it has also been reported as
a biomarker of fish intake by other authors (82, 107) and shown
to be more responsive to intake of fish than meat (85). Several
dietary precursors of TMAO such as choline or carnitine have
been described (108) and care should be paid when interpreting
variations in TMAO concentrations in populations.

The state of validation of biomarkers listed in Table 3 varies
widely. Proline betaine is a good example of a well-validated
citrus fruit biomarker. Other biomarkers, particularly those
identified in controlled intervention studies, may prove to be less
robust in populations because of the possible existence of a va-
riety of precursors as seen for TMAO, or the occurrence of the
same precursor in various foods. Food-derived biomarkers such
as caffeic acid sulfate or methylepicatechin sulfate, which were
found to discriminate consumers of raspberries (82), may not be
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that useful in epidemiologic studies because both their parent
metabolites (caffeic acid and epicatechin) have been described in
a variety of foods of plant origin (70).

For this reason, it may be particularly advisable to look for
characteristic dietary biomarkers directly in cross-sectional
studies. However, the chances to identify robust biomarkers will
rely both on the sensitivity of the analytic equipment used and on
the quality of the dietary data against which metabolic profiles are
correlated. Both 24-h dietary recalls and food-frequency ques-
tionnaires have been used, and new biomarkers for citrus fruit
intake or coffee were successfully identified (49, 88) (Table 3).
The use of food-frequency questionnaires may directly lead to the
identification of biomarkers of habitual dietary exposure, but the
lower accuracy and lower number of foods documented may limit
their value for such discovery studies (105).

With the exception of 2 studies on dietary fiber and milk protein
diet, all discovery studies were conducted on urine samples as
opposed to blood samples (Table 3). The reason for this is partly
technical because of the higher concentrations of food-derived
metabolites in urine as compared with blood and because of the
lack of interfering proteins. This contrasts with the preferred use
of blood biospecimens to measure biomarkers of nutritional status
in epidemiologic studies. More metabolomic studies using blood
samples should be carried out because of the more common
availability of plasma or serum samples in biobanks. Also, li-
pophilic biomarkers, which may be more stable over time (see
Pharmacokinetics and reliability of dietary biomarkers section),
are more likely to be found in blood. Regression analyses of the
concentrations of 363 metabolites in plasma with a number of
dietary variables measured with a food-frequency questionnaire
showed the highest correlations with phospholipid concentra-
tions (109). Furthermore, chain length and degree of saturation
of fatty acids in glycerophosphatidylcholines were associated
with intake of specific foods or nutrients such as fish and dietary
fiber.

It is important to point out that the identities of many of the
proposed biomarkers in Table 3 (marked with an asterisk) have
not been fully validated with proper chemical standards because
these standards are often not commercially available. In addition,
no standard yet exists to report chemical identification of bio-
markers in metabolomic studies (110). For this reason, it is
often difficult to evaluate the degree of confidence in biomarker
identification.

Analysis of the food metabolome

Analyzing the food metabolome is a particularly challenging
task for 3 reasons. First, it comprises a much greater chemical
diversity than any other part of the metabolome (see Food me-
tabolome and metabolite databases section). A second feature of
the food metabolome is the huge range of concentrations, from
picomolar or nanomolar concentrations for some contaminants
or phytochemical metabolites to millimolar concentrations for
nutrients such as sugars. Third, many components of the food
metabolome are unknown. Indeed, the metabolism for a large
proportion of nonnutrients in humans has never been studied and
the chemical structures of their circulating metabolites have not
been identified. Until recently, the food metabolome was typi-
cally analyzed through targeted methods optimized for specific
compounds or families of nutrients or nonnutrients, such as
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TABLE 3 (Continued)

Analytic
technique

Dietary assessment

No. of

Dietary factor and

study type

Reference

Biomarker

Biospecimen

tool

Comparison

subjects

Milk protein diet

(103)

Short-chain fatty acids*

MR

S (fasting)

Before/after NA

24

SMTI
Omnivorous diet

(104)

Trimethylamine-N-oxide,* dimethylamine,* phenylalanine,* methylhistidine*

NMR

U (fasting)

Questionnaire

Consumers/control

161

CS
Lactovegetarian diet

(104)

Citrate*

NMR

U (fasting)

161 Consumers/control  Questionnaire

CS
Phytochemical-rich

THE FOOD METABOLOME:

diet (citrus,

cruciferous

vegetables, soy)

SMTI

Sulforaphane,* proline betaine,* hippuric acid,* genistein,* daidzein,* (105)

LC-FTICR-MS

U (spot)

NA

Consumers/control

10

equol,* glycitein,* O-desmethylangolensin,* enterolactone,* trigonelline*®

Proline betaine*

(105)

LC-FTICR-MS

U (spot)

Dietary record

H/L

60

CS
Nordic diet

Trimethylamine-N-oxide, hydroquinone-glucuronide, hippuric acid, (106)

LC-Q-Tof

U (fasting)

24-h recall and

Consumers/control

107

SMTI

(2-0x0-2,3-dihydro- 1H-indol-3-yl)acetic acid, 3,4,5,6-tetrahydrohippurate™

supermarket records

! *No standard was used to confirm the identity of the biomarker. Al, acute intervention; CS, cross-sectional; FFQ, food-frequency questionnaire; FIE, flow injection electrospray; FTICR, Fourier transform

ion cyclotron resonance; GC, gas chromatography; H/L, high and low (intake); H/M/L, high, medium, and low (intake); LC, liquid chromatography; MS, mass spectrometry; NA, not applicable; NMR, nuclear

magnetic resonance spectroscopy; P, plasma; Q, quadrupole; S, serum; SMTI, short- and medium-term intervention; Tof, time-of-flight; U, urine.
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lipids, organic acids, sugars, flavonoids, or carotenoids. How-
ever, the combination of available targeted analysis methods is
still far from covering the whole chemical space of the food
metabolome. In principle, untargeted metabolomics provides
a wider coverage and is likely to show the presence of new
metabolites in biofluids and tissues.

As is the case for the other parts of the metabolome, mass
spectrometry (MS) coupled with gas chromatography or liquid
chromatography and NMR are currently the most widely used
technologies for food metabolome analysis (Table 3). The ad-
vantages and disadvantages of these techniques have been ex-
tensively discussed elsewhere and are beyond the scope of the
present review (111-113). Briefly, NMR is robust, nondestructive,
and quantitative but has a relatively low sensitivity, which narrows
its coverage of the food metabolome to predominant nutrients,
sugars, and microbial metabolites present at millimolar to mi-
cromolar concentrations. MS is by far the most sensitive tech-
nique and the only method able to cover the nonnutrient
metabolites of the food metabolome occurring at low concen-
trations in biological samples. GC-MS combined with chemical
derivatization has been used to analyze constituents of the food
metabolome such as phenolic acids or fatty acids (79, 93, 94).
However, to date, most studies on the food metabolome have
been performed by using high-resolution liquid chromatography-
quadrupole-time-of-flight MS with electrospray ionization
(Table 3). This technique has been successful in detecting
compounds such as terpene metabolites, diketopiperazine me-
tabolites, phenylvalerolactones, and benzoxazinoid metabolites,
which are interesting candidate biomarkers of food intake that
would not be easily detected in biofluids by NMR or GC-MS
(49, 86, 96). No single chromatographic method is able to cover
the wide range of polarity existing for the food metabolome
compounds. Highly polar compounds may have to be analyzed
by using hydrophilic interaction chromatography, whereas spe-
cific methods with atmospheric pressure chemical ionization
may be developed for profiling apolar plasma metabolites. Di-
rect flow injection-MS has also been used (82, 114), which of-
fers the advantage of high-throughput analysis, as would be
required for large-scale epidemiologic studies. However, ion
suppression effects, due to inefficient ionization of certain ions
in complex matrices and the inability to discriminate between
isomers, limit the use of this approach.

The main current limitation of MS is the very challenging and
burdensome task of the structural elucidation of the detected ions
(see below). However, because of its sensitivity and breadth of
coverage, LC-MS has certainly become the method of choice for
untargeted analysis of the food metabolome. Rapid advances in
technology have led to a new generation of much more efficient
time-of-flight and single-stage Orbitrap (Exactive; Thermo Sci-
entific) instruments, offering improved linearity, resolution, and
mass accuracy, which will be critically important for the analysis
of the food metabolome (115). As with any experimentally based
analytic method, multiple variables can substantially affect the
final data set. These include the mode of sample preparation,
method of chromatography, mode of detection, and the choice of
data reduction methods (116, 117). No standardized method
exists yet, and the need for improved harmonization is certainly
desirable for further progress on the food metabolome.

Achieving absolute quantification rather than relative quantifi-
cation of food metabolome metabolites via untargeted methods
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remains a continuing challenge. It is essentially impossible to use
standards or isotopically labeled references to quantify the thou-
sands of compounds in the food metabolome. New approaches are
being developed with isotope labeling and multiple reaction
monitoring—based profiling for families of compounds sharing
distinctive chemical functionalities (118). Labeled reagents tar-
geted at these functionalities or particular multiple reaction
monitoring transitions could be used to specifically measure se-
lected fractions of the food metabolome such as amines, phenols,
glucuronides, or mercapturic acid derivatives. These advances may
allow researchers to target larger areas of the food metabolome
chemical space with the use of standardized quantitative methods.

Analysis of metabolomic data

The metabolic profile of raw data generated by the spectro-
metric analysis of biological samples can be analyzed in several
steps (119, 120). These include data preprocessing, data align-
ment, data normalization, and signal correction followed by the
analysis through various statistical methods. There are a number
of different software tools available for these tasks; most vendors
have their proprietary software but highly efficient freeware
programs, Web servers, or add-on softwares exist. For NMR, an
example is the Interval Correlation Optimized shift algorithm
produced for Matlab (121), and for LC-MS data alignment
freeware such as XCMS (122), MZmine (119, 123), and Met-
Align (124) are widely used.

The preprocessing step is software dependent and typically
includes data reduction methods such as centroiding of mass
spectra or analog-to-digital conversion of NMR, infrared, or UV/
visible spectra. Preprocessing also includes translation of data
formats and data export. The next step is data alignment. It is
crucial to align the different sample profiles, which do not match
exactly because of small variations in retention times, masses, or
chemical shifts. All available software tools differ in their peak
picking algorithms. There is only a 50-70% overlap between the
peaks detected by different packages from the same raw data set,
even with similar settings (125). Additional markers may be
observed by using additional softwares or simply by altering
software settings. Another major difference between packages is
the presence or absence of so-called gap filling, a routine to
revisit the raw data for any peak that has not been detected in
a sample when it was found in others. The lack of a gap-filling
algorithm creates major problems for normalization and for
statistical analysis. An ideal food intake marker would have
a zero value in control samples from volunteers who did not
consume the food; in this case, the gap-filling routine helps to
estimate the background noise in the peak area.

The output from the peak detection and data alignment steps is
typically a matrix of samples and features with the intensity as the
values within the matrix structure. A feature here denotes any
distinct peak in the data set, regardless of whether it represents
a known, unknown, or even an artifact ion. In LC-MS profiling,
the features are characterized by a retention time and a mass (m/z)
value. Such a feature may be a compound’s parent ion, but just
as frequently it represents an adduct ion or a fragment from
a compound. In NMR and in most other digitized spectral data the
single features are part of spectral shapes that usually have local
maxima and minima. For both kinds of data the fine structure of the
data contains additional information that is useful for identifying
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compounds and structures in the samples and is therefore partic-
ularly important for characterizing the food metabolome.

Metabolic profiling data may be analyzed by using univariate or
multivariate statistical methods. Statistical analysis of untargeted
metabolomic data is often an initial step in the biomarker discovery
process that should not be confused with hypothesis testing, be-
cause there is no a priori hypothesis. In dietary intervention studies
with single foods, the contrast observed for a good biomarker can be
large, sometimes even infinite, making it possible to work robustly
with small sample sets and discriminate potential intake biomarkers
from more subtle changes in endogenous metabolites (126). In
cross-sectional studies this large contrast seldom applies, but ap-
proximate dose-response relations from food-frequency question-
naires may help in the identification of food intake biomarkers.

Multivariate analysis is most commonly used for explorative
analysis of metabolic profiling data (127). As opposed to uni-
variate analysis, multivariate analysis can be performed in an
unsupervised manner (ie, without including information on group
assignment for the analysis). This provides an objective as-
sessment of the principal patterns in the data set (eg, intake or no
intake of a specific food component or diet). Unsupervised
analysis such as principal components analysis (PCA) should
always be the starting point for explorative multivariate analysis
to ascertain that there is an overall segregation into a food-related
pattern. The features associated with any pattern can be shown by
the loadings in a PCA plot; however, PCA is generally not well
suited to identify the most prominent part of the pattern. Sparse
PCA overcomes this limitation (128, 129). Clustering methods
are also widely used for subdividing and ordering a data set into
groups of data with a high degree of similarity. Hierarchical
clustering generates a dendrogram in which neighboring samples
share the greatest similarity and neighboring features are those
most closely related. This provides useful biological information
and unsupervised groupings of the data set (130).

Supervised multivariate analysis is commonly the next step in
many data analysis methods but has a strong tendency to overfit
the data. Even random data will usually segregate and show
a “marker pattern” after supervised analysis (131). Careful
validation with the use of techniques such as permutation testing
and cross-validation is therefore always necessary. There are
a large number of supervised methods (120, 127), with the most
commonly used analysis for comparing 2 groups being partial
least-squares discriminant analysis (PLS-DA) (132) or one of its
several variants. In complex nutritional studies it may be useful
to combine ANOVA separations of factors with PLS-DA (133,
134) or use multilevel PLS-DA to reduce the influence of in-
terindividual variation (135). Some multivariate methods such as
PLS are mainly used to fit the data to a continuous variable. This
is useful to explore the relation of any features in the profiling
data set with an external variable (eg, intake of a specific food
based on a questionnaire or any biological outcome marker)
(121). In addition, for these prediction models very careful
validation is required and their global ability to predict a specific
food intake has to be assessed in separate studies.

Univariate analysis is supervised—that is, a hypothesis re-
garding a difference between groups is implicit. Any marker
identified by this approach should therefore also be in-
dependently validated in a separate study. For univariate analysis
used in exploration of new food intake biomarkers it is impor-
tant to set a reasonable threshold for false discovery rates
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(FDRs) (136, 137). In explorative science there is no fixed rule
for the acceptability level of the FDR, and any level from 5% to
50% may be useful, depending on further data analysis steps.
If no additional data analysis is planned as, for instance, in
metabolome-wide association studies (MWASSs), the FDR should
generally be selected in the lower end of this range. If the
univariate data step is used for selection of features that will be
analyzed further (eg, by multivatiate models), it may be more
appropriate to use a higher FDR. In any case, the markers found
must be validated in subsequent independent studies.

Overall, the field of metabolomics is rich with data analysis
options, and the challenge in the future will be to optimally apply
these to food metabolomic studies. Useful resources exist to help
in selecting and using in the most rigorous way appropriate tools
for data analysis in a particular project (138).

Metabolite identification

Metabolite identification in metabolomic studies relies on the
comparison of generated spectra with those in curated metabolite
databases. However, the vast majority of the food metabolome
components are not yet represented in these databases, which
makes the elucidation of their structure difficult. As previously
described, the identification of candidate dietary biomarkers is
complicated by the fact that the majority of food compounds are
treated as xenobiotics by the human body in phase I and phase II
reactions or undergo fermentation in the colon by the gut
microbiota (139). Despite some increase in their availability over
the past few years, these highly diverse metabolites are largely
absent from most databases. One exception is Phenol-Explorer,
which gives a comprehensive overview of the human and animal
metabolites formed from polyphenols (70).

NMR spectroscopy and MS are the 2 essential tools for elu-
cidation of the structure of unknown metabolites in metabolomic
studies (140, 141). Metabolites such as S-methyl-L-cysteine
sulfoxide or proline betaine as biomarkers of cruciferous vege-
tables or citrus fruit, respectively, could be identified in NMR
studies on the basis of their characteristic chemical shifts (Table
3) (80, 84). More markers of food intake have been identified in
MS-based metabolomic studies on the basis of their accurate
mass and mass fragmentation spectra (142—-144).

A number of commercial and “in house” software tools have
been developed recently and used to recognize and identify
fragments and adducts derived from one food metabolite (97,
114, 145). These tools are particularly useful to identify phase
II conjugates, common constituents of the food metabolome,
which show characteristic neutral losses (eg, 79.957 amu for
sulfate conjugates and 176.032 amu for glucuronides) (44, 114,
140). Customized in-house databases on the most likely phase I
and phase II metabolites have also been developed based on in
silico prediction with expert systems such as Meteor (49, 146—
148). An important challenge for the future will be the de-
velopment of a coordinated international effort to extend existing
and develop novel software tools and databases allowing the more
“intelligent” prediction of the metabolic fate of food constituents.

Spectral databases for the food metabolome

Despite the many initiatives to make spectral data sets
available to the scientific community, the publicly accessible
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existing spectral data are still scattered over numerous Web-based
(searchable) databases, printed tables in scientific journals, Excel
files in supporting information, and scientific books (140, 149,
150). As described earlier, the major online chemical resources
(typified by PubChem, Kyoto Encyclopedia of Genes and Ge-
nomes, and ChemSpider) contain limited information on human
metabolites derived from food compounds. Although they are not
specific to the food metabolome, these resources are useful for
metabolite identification because fragmentation data or NMR
signals of known metabolites can be compared with the unknown
query to gain structural information. The most comprehensive
and best-curated chemical (commercial) database is currently
SciFinder, which includes many food metabolome compounds
collected from the literature (151). Recently, a large number of
food compounds have been added to the HMDB, which makes
searches on the basis of their accurate masses possible (9);
however, to date it contains few mass fragmentation spectra
useful for food metabolite identification.

The robust and reproducible fragmentation patterns and re-
tention times of volatile metabolites in GC-MS have successfully
been used to set up metabolomic workflows that search for
possible candidate metabolites in the National Institutes of
Standards and Technology library or in-house libraries (152).
Recently, similar approaches have been proposed for LC-MS—
and NMR-based metabolomic data sets. Spectral databases
contain fragmentation spectra obtained in different experimental
conditions (eg, several collision energies and different mass
spectrometers) to facilitate direct comparison with experimental
data (141). Also, the number of metabolite spectra in Chem-
spider and HMDB is increasing. Even though not specific to the
food metabolome, these resources are particularly useful for
metabolite identification because fragmentation data or NMR
signals of known metabolites can give structural hints for the
unknown query.

Software tools for annotation of the food metabolome

Software tools such as MetFrag, MyCompoundID, MetiTree,
and Mass Frontier can handle metabolite fragmentation data and
permit library searches for potential candidates using in silico
fragmentation predictions of metabolites or comparisons to
previously fragmented metabolites or standards (146, 153-155).
MetFusion combines knowledge from spectral databases such as
MassBank with the multitude of candidates generated by frag-
menters such as MetFrag (156).

Software tools have also been developed that integrate me-
tabolite annotation directly within the processing pipeline of LC-
MS data (157). For example, CAMERA is a pipeline for the
annotation and analysis of LC-MS data in cooperation with
XCMS (158, 159). Online MS/MS fragmentation, UV spectra,
and estimates of partition coefficients based on retention time
have been used to further investigate metabolite structures (157,
160, 161). The MagMA software package recently launched is
able to read multistage tandem mass spectral data to add potential
candidates based on in silico—predicted fragmentation (162). In
particular, the use of accurate fragmentation mass data as input
can enhance the metabolite identification process by selecting
the most likely candidates on the basis of similarities in frag-
mentation pathways and their readily assigned elemental for-
mula with the unknown query metabolite as exemplified by
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dietary polyphenols (144). A large number of polyphenol me-
tabolites such as glucuronides of 5-(3’,4’-dihydroxyphenyl)-
y-valerolactone and sulfate esters of methylated (epi)catechin
could thus be easily annotated and some fully structurally elu-
cidated by using a combination of MS fragmentation and NMR
(163).

Moreover, recently developed bioinformatics approaches aim
to narrow the number of possible candidate structures that match
with an unknown query metabolite by taking into account the
chemical and biological background of the sample (164). For
example, it is more likely that a metabolite excreted in urine is
more polar as a result of phase II reactions. This has predictable
consequences for its expected mass and chromatographic be-
havior, which can be used to mine metabolomic data sets. It is
expected that these various software tools will be beneficial in the
hunt for metabolite entities represented by the food metabolome.

PERSPECTIVES FOR FUTURE APPLICATIONS OF THE
FOOD METABOLOME

Discovering disease-related dietary factors

MWASSs have been proposed as useful tools for discovering
low-molecular-weight biomarkers that are predictive of either
causal exposures or disease progression (59, 165, 166). In fact,
MWASs can be regarded as a special case of the exposome-wide
association study, which investigates disease associations with all
exposures to low- and high-molecular-weight compounds (167).
Given the thousands of potentially important exposures to con-
sider, MWASs and exposome-wide association studies move
away from knowledge-driven designs that focus on a priori
hypotheses about particular exposures toward data-driven de-
signs using untargeted or semitargeted sets of analytes (167). In
either case, potentially useful biomarkers may be identified
through rigorous comparisons of quantitative or semiquantitative
profiles of biospecimens obtained from subjects with and without
a particular disease (59). Because diets and lifestyle strongly
affect the metabolome, any pending disease may lead to reverse
causation in MWASs; study design and interpretation must
therefore take into account the common responses to early signs
of disease in the population under study and other potential
confounders.

This biomarker discovery process is shown in Figure 2. With
a focus on the food metabolome and associated biomarkers of
potentially causal dietary exposures, the figure includes both
semitargeted and untargeted designs. In the semitargeted ap-
proach, preliminary cross-sectional studies are developed to
connect dietary records with the food metabolome and thereby
identify dietary biomarkers that are highly correlated with the
consumption of particular foods. A good example of this ap-
proach is given by Saadatian-Elahi et al (168), who correlated
food consumption, as determined by 24-h dietary recall, with
plasma concentrations of 22 fatty acids determined by gas
chromatography in 3000 subjects from the European Prospective
Investigation into Cancer and Nutrition cohort. Strong correla-
tions between regional dietary factors and fatty acid concen-
trations allowed components of the food metabolome to be used
as predictor variables in a prospective investigation of gastric
cancer in the European Prospective Investigation into Cancer
and Nutrition cohort. Three fatty acids—oleic acid, a-linolenic
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acid, and di-homo-+y-linolenic acid—were found to be associ-
ated with the risk of gastric cancer (169). These associations
were tentatively explained by either different amounts of dietary
intake or differential fatty acid metabolism in cases and controls.

The alternative untargeted approach makes no a priori as-
sumptions regarding sources of exposure that are causal for
a particular disease but instead relies on comparisons of com-
prehensive profiles of metabolomic features between cases and
controls to find discriminating exposure biomarkers. Once these
exposure biomarkers have been identified, follow-up studies are
performed to determine their sources (167), and those related to
dietary factors would be regarded as disease-associated dietary
biomarkers (Figure 2). The agnostic nature of the untargeted
design allows all potentially useful biomarkers to be identified,
including not only dietary biomarkers but also those related to
endogenous factors (including the microbiota), pollution, and
drugs as well as biomarkers of disease progression. A good
example of the untargeted approach is given by Holmes et al (59)
and Bictash et al (166) who used untargeted NMR of >4000
urine specimens from the INTERMAP study to investigate po-
tentially causal factors for high blood pressure across geo-
graphically diverse populations. The investigators showed that
metabolite concentrations differed substantially between Asian
and Western populations, suggesting important effects of diet
and related risk factors, including the microbiota, on the risk of
coronary artery disease and stroke. Three highly discriminating
biomarkers were identified, namely alanine, which was directly
correlated with blood pressure, and formate and hippurate, both
of which were inversely correlated with blood pressure. All of
these discriminatory biomarkers point to dietary sources, some-
times in combination with cometabolism by gut microbiota. For
example, alanine is associated with diets that emphasize animal
products rather than vegetables, and hippurate has been associated
with microbiota colonization of the gut (170).

A more recent example of the untargeted approach is provided
by a series of articles from Stanley Hazen’s group at the
Cleveland Clinic (108, 171, 172). In their initial untargeted
LC-MS/MS investigation (171), the authors showed that the nutrient
choline, along with its major metabolites, betaine and TMAO,
were associated with risks of cardiovascular disease, particularly
TMAO. Then, by using an elegant set of targeted follow-up

Dietary records Metabolome (including the food
metabolome)

Dietary
biomarkers

Diseased vs. healthy
/ subjects Biomarkers of
disease
Dietary Biomarkers of

biomarkers

Endogenous

biomarkers
Pollutant

Dru, .
biomar?(ers biomarkers

FIGURE 2. The food metabolome and discovery of food-related bio-
markers associated with diseases. Both semitargeted and untargeted ap-
proaches are shown. Disease-validated biomarkers are shown in bold letters.
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studies with the use of a choline challenge as well as charac-
terization and manipulation of microbiota, Hazen and coworkers
showed that consumption of foods rich in choline or carnitine,
such as eggs, milk, liver, meat, or fish, produced high concen-
trations of TMAO in both humans and animals who possessed
the requisite microbiota for metabolizing choline or carnitine to
trimethylamine, the immediate precursor of TMAO (108, 171,
172). Subjects from a cohort of >2000 patients with cardio-
vascular disease, who were in the highest quartile for plasma
TMAO concentrations, had a >2-fold risk of a heart attack or
stroke compared with subjects from the lowest quartile (108, 172).

Identification of new potentially bioactive food—derived
metabolites

The application of metabolomics to foods has allowed the
identification of a large variety of novel food constituents that are
either naturally present in the food species or formed during food
processing (65, 173, 174). Similarly, the exploration of the food
metabolome in human biofluids by means of wide-coverage
profiling methods and intermetabolite correlation analysis (175)
should show exposures to many nonnutrient food compounds and
their metabolites whose presence has not been previously
identified. These compounds could also be new bioactive com-
pounds. As an example, the recent description of benzoxazinoids
in rye facilitated the identification of some of their metabolites
(2,4-dihydroxy-1,4-benzoxazin-3-one, 2-aminophenol sulfate, and
hydroxylated phenylacetamides) in urinary metabolic profiles
observed after rye bread consumption (86, 114). These ben-
zoxazinoid metabolites certainly deserve further investigation as
potential contributors to the health effects of rye products because
of some documented anti-inflammatory, immunoregulatory, and
appetite-suppressing properties (176). This example shows that
a better characterization of chemicals contained in a given food
should markedly improve our understanding of food-derived
exposures and their biological effects.

Metabolomics will help nutrition researchers move away from
the reductionist views on health effects of foods that have largely
prevailed until today. For many years, health effects associated
with a particular food have often been attributed to just 1 or 2 of
their constituents on the basis of certain biological properties
observed in vitro. Examples include lycopene in tomato, which is
thought to prevent prostate cancer; isoflavones in soy products,
which may prevent hormone-dependent cancers; and catechins in
tea or flavanones in citrus, which may play a role in the pre-
vention of cardiovascular diseases. Although these compounds
may actually contribute to the health effects of the food, as has
been well demonstrated in intervention studies in which a whole
food has been compared with one of its bioactive constituents
(177), their popularity may have overshadowed the contribution
of other, lesser known constituents also present in the same food.
Metabolomics could potentially reveal these other bioactive
constituents, and the approach is already being used in the
characterization of multicomponent drugs and herbal medicines
(178). Knowledge of all circulating metabolites is essential to
understand the effects of the diet on health, and new metabolites
formed from nutrients and other food constituents are continuously
being identified, even for widely studied compounds (101, 179).

The combining of metabolomic with genomic data will also be
important to identify dietary compounds causally related to
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diseases. A number of loci associated with variations in the
concentration of endogenous metabolites could be identified in
genome-wide analysis studies, and many of these genes were
coding for metabolic enzymes (180-182). Various enzymes in-
volved in the biotransformation of xenobiotics and dietary com-
pounds also show genetic polymorphisms (183, 184). The analysis
of their variants combined with that of the food metabolome in
MWASs may reinforce the associations observed between food-
derived metabolites and disease risk as has been previously found
for alcohol or folate as disease risk factors (185, 186). A deeper
knowledge of the enzymes involved in the biotransformation of
dietary compounds is, however, needed to warrant success of this
approach.

Another possible approach to identify food compounds po-
tentially responsible for the activity is the study of longitudinal
variations in their concentrations and their associations with
particular health outcomes or surrogate health markers in pop-
ulation studies or clinical trials. The kinetics of a metabolite’s
appearance in plasma after a meal can be related to the kinetics
of associated physiologic events. Epicatechin metabolite con-
centrations in plasma after cocoa intake paralleled the increase
of plasma nitroso species concentrations and the vascular re-
sponse (187). Overall, the study of the variability in the food
metabolome (which permeates all human tissues) and its asso-
ciation with health outcomes should greatly contribute to the
identification of the food metabolites responsible for the effects
of diet on health and diseases.

NETWORKING AND RECOMMENDATIONS TO MOVE
THE FIELD FORWARD

As detailed in the previous sections, food metabolomics re-
quires inputs from specialists from various disciplines, including
analytic chemistry, chemometrics, statistics, bioinformatics,
nutritional science, and biology. Within one group, it is difficult to
cover all the techniques and methods required to perform a
comprehensive metabolomic study. Several networking initia-
tives may help in this respect by providing rapid access to new
information and tools. The rapid pace of development in
metabolomic profiling techniques makes the role of networks
even more important to help absorb and facilitate the use of all of
the information. This is supported by creating databases for
compound information and spectral data, libraries of chemical
standards, algorithms for data analysis, repositories for raw data
and metadata, and standardization initiatives to define current
good practices. The Metabolomics Standards Initiative (MSI)
launched by the Metabolomics Society is an example of such an
initiative, and the MSI has already had significant impact on
reporting formats in metabolomics (110, 188).

Further networking initiatives to share knowledge in open dis-
cussion or workshops, the sharing of data and standard operating
protocols, as well as starting common training initiatives will be
important to accelerate progress in the field. A good example of such
a sharing network is the European Nutrigenomics Organization,
a not-for-profit private organization with academic and private in-
stitutional members from all over the world. None of these efforts
should be seen as static but rather as a current collective instrument
to help in the release of biological information at the level of the
metabolome. There are several open-user forums working with the
development and application of metabolomic software and
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standards in general, such as the MSI working groups (189), the
Metabolomics Forum (190), and several others, but none of these
relate specifically to the food metabolome. The First International
Workshop on the Food Metabolome was a first occasion for all
researchers active in the field to meet and make propositions for
future research. These propositions are summarized here.

Coordination of dietary studies

The food metabolome is exceedingly complex because it en-
compasses metabolites derived from as many metabolomes as there
are edible species. Therefore, a particularly focused community
effort is necessary to reach our ultimate goal of full coverage for all
foods and all food metabolites. A large number of studies with
different designs will be necessary to validate each dietary marker.
For example, many studies have been conducted with oranges
(Table 3), but a broad coverage of all citrus and many other fruit as
well as kinetic studies have been necessary to interpret proline
betaine as a short-term marker of citrus that is dominated by orange
and orange juice intake (80). Similar work is needed and could be
a shared effort for many other food groups, including cruciferous
and apiaceous vegetables, pomes, cheeses, meats, fish, and others.

A large concerted action or open-project network would be
needed to help prioritize needs for novel markers and focus on areas
in which drugs have largely failed and where diet and nutrition
show promise to prevent or cure diseases. More discussion is clearly
needed between laboratory scientists, nutritionists, and epidemi-
ologists to address this question in a rational way. Such a network
might share information on current research plans to avoid re-
dundancy, share known as well as unidentified markers related to
specific foods, or even form a shared workflow pipeline for dietary
studies, data analysis, and metabolite identification. In addition, the
constitution of a database describing resources of high-quality
human samples collected in various dietary intervention studies
developed for other purposes would also be extremely useful. This
information is partly accessible in a database such as ClinicalTrials.
gov (191), but no indication is given on the availability of bio-
specimens. These samples would prove very useful for biomarker
validation purposes and would save a lot of effort and money
otherwise needed to replicate such clinical studies. An example of
a local, but open, sample repository for experimental studies in-
cluding nutrition is the CUBE biobank, which covers samples from
a single university (www.cube.ku.dk). An umbrella of such local
repositories could be one possible way forward to improve reuse of
samples for biomarker validation studies.

Software tools

A comprehensive set of software tools has been developed and
shared to help the scientific community that covers every step in
data processing and analysis. Most of these are not specific to the
food metabolome analysis (see Analysis of metabolomic data
and Software tools for annotation of the food metabolome sec-
tions). However, for the identification of food-derived metabo-
lites, additional software developments are needed, particularly
for in silico prediction of the metabolism of compounds found in
foods. Some commercial software exists for the pharmaceutical
area (192, 193) and covers many phase I and II reactions. How-
ever, many compounds in foods have structures that are un-
common in pharmaceuticals. Food constituents may be degraded
by specialized enzymes and may also be extensively metabolized
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by the gut microbiota, so these metabolic pathways need to be
covered as well. This work will require a large community effort
to develop software to predict structures from all possible me-
tabolites from any food compound, including their conjugates;
such a tool could be further combined with software that performs
in silico fragmentation to predict daughter ions and additional
prediction tools for predicting physicochemical properties such as
polarity and hence retention time. Prediction of absorption, dis-
tribution, and excretion of the food compounds and of their me-
tabolites would be an additional area that would help the food
metabolome community. Systematic in silico—predicted metabo-
lites could also be stored in food metabolome databases.

Databases

The human metabolome database has recently expanded to
include compounds found in common foods because these are, at
least initially before metabolism, also present within the human
body (9). Databases specific for the food metabolome are still
largely missing apart from Phenol-Explorer, a database on all
known polyphenol metabolites (70). The development of similar
databases for other classes of food compounds will likely require
a coordinated effort from many researchers active in various
fields. These databases should provide spectral data for the food-
derived metabolites in each class and any information useful for
their identification. When not available, in silico—predicted mass
fragmentation spectra could be calculated and also stored, as is
done in SciFinder (151). The same databases could additionally
allow metabolites to be linked with their food precursors, as well
as with their possible dietary sources (70). The involvement of
food scientists will be essential to provide this information.

Study repositories with processed metabolomic data

To shape consensus and create openness in the evolving field of
metabolomics, it is important to share data and information on
food metabolome studies, as is done in many other biomedical
fields (194-196). Indeed, for many funding agencies, this is
becoming a key condition of funding. One such initiative is the
Metabolights database, which aims to shape a fully open-access,
shared database for metabolomic studies (197). Raw and pro-
cessed data and metadata can be uploaded and curated before
deposition into the Metabolights core database, which then
makes the information accessible through the Internet. A similar
ongoing but conceptually broader initiative is the Nutritional
Phenotype Database (dbNP) (198), initiated by the Nu-
trigenomics Organization. The dbNP can hold data from several
omics platforms, including metabolomics, together with study
metadata in a searchable format. It is open access and builds on
private accounts for uploading and analyzing data with the
possibility of open sharing when data can be released for others.
Both dbNP and Metabolights provide several online software
tools to help in data curation and analysis.

The storage of searchable, annotated, raw analytic data files
with well-documented dietary metadata from human intervention
or cross-sectional studies will facilitate the comparison of raw or
preprocessed data with previously obtained spectral data of food-
derived metabolites. Such a repository that contains all unknowns
detected in previous food metabolome studies would be a pre-
cious aid to identify the most robust dietary biomarkers. The
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format of raw analytic data concerning the food metabolome as
well as that of the dietary metadata will have to be defined.

Food metabolome reference library

The definitive identification of biomarkers is often hampered
by the lack of available chemical standards. The large majority of
the components of the food metabolome are not commercially
available. The development of a resource to synthesize and
distribute chemical standards should be a priority. The de-
velopment of a shared or federated resource of chemical stan-
dards for dietary metabolites will allow researchers to confirm or
validate compound identifications. Food scientists and natural
product chemists who have isolated from various foods and
related products or synthesized these chemicals should be as-
sociated with this effort. Biotransformation routes (enzymes,
microorganisms) could also be better exploited particularly to
synthesize conjugated metabolites.

Standardization initiatives

The MSI, initiated by the Metabolomics Society, has already
issued several reference articles on good practice for metab-
olomic research. The MSI is broad and includes activities by
several working groups covering many aspects of metabolomics
(189). However, there is no current standardization initiative for
the food metabolome, and the current article is launched as
a starting signal for such an initiative to share tools, information,
and data sets to help encourage a community-driven advancement
of research on the food metabolome.

One of the most needed initiatives is a strategy with associated
tools for the validation of food intake biomarkers. In particular,
a reference database could integrate all potential markers that can
be included into targeted multimetabolite methods; each marker
listed could be graded indicating the level of validation: for ex-
ample, “0” for a newly discovered putative biomarker, “1” for
a biomarker with analytic validation including kinetics in the
sample type of interest, “2” for a biomarker also validated in a
controlled dietary intervention studies as well as in cross-sectional
studies, and “3” for a biomarker also confirmed to be in ac-
cordance with other markers for the same food or foods.

Training

Finally, education and training in the food metabolome also
represent an effort that needs to be shared at all levels, from
creating the basic training texts to specialized courses at several
academic levels. Several training workshops on metabolomics
and nutrition were supported by the Nutrigenomics Organization
(112). However, more sustained and focused support is needed to
bring the field of food metabolome research to maturity.

CONCLUSIONS

Recent analyses of the food metabolome with modern analytic
and bioinformatic tools have shown the considerable extent of
information on dietary exposure contained in human biospeci-
mens. Some proof-of-principle studies have established the
feasibility of metabolomic approaches to identify novel dietary
biomarkers and suggest that these approaches could greatly
expand the field of molecular nutritional epidemiology and
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contribute to future progress in nutrition research. Propositions
made here to define common objectives and priorities, optimize
study designs, develop databases and software tools, and promote
sharing of data and resources should contribute to bringing this
emerging field to maturity. A dialogue between nutritionists,
epidemiologists, analysts, chemometricians, statisticians, and
bioinformaticians has just begun. It will be essential to build
multidisciplinary projects and make sure that the design of future
studies is defined and optimized to answer to nutritionists’ and
epidemiologists’ most urgent needs for biomarkers. Major
progress in assessing complex dietary exposures at the indi-
vidual level is expected from these biomarkers. They should also
significantly contribute to a better understanding of the complex
interactions between diet and human health.
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